These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 30070046)

  • 21. Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method.
    Nguyen VH; Naili S
    Int J Numer Method Biomed Eng; 2012 Aug; 28(8):861-76. PubMed ID: 25099567
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A computational study of amoeboid motility in 3D: the role of extracellular matrix geometry, cell deformability, and cell-matrix adhesion.
    Campbell EJ; Bagchi P
    Biomech Model Mechanobiol; 2021 Feb; 20(1):167-191. PubMed ID: 32772275
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel micro-to-macro structural approach for mechanical characterization of adipose tissue extracellular matrix.
    Seyfi B; Fatouraee N; Samani A
    J Mech Behav Biomed Mater; 2018 Jan; 77():140-147. PubMed ID: 28910711
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modified Immersed Finite Element Method For Fully-Coupled Fluid-Structure Interations.
    Wang X; Zhang LT
    Comput Methods Appl Mech Eng; 2013 Dec; 267():. PubMed ID: 24223445
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stabilization approaches for the hyperelastic immersed boundary method for problems of large-deformation incompressible elasticity.
    Vadala-Roth B; Acharya S; Patankar NA; Rossi S; Griffith BE
    Comput Methods Appl Mech Eng; 2020 Jun; 365():. PubMed ID: 32483394
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems.
    Tian FB; Dai H; Luo H; Doyle JF; Rousseau B
    J Comput Phys; 2014 Feb; 258():. PubMed ID: 24415796
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Partitioned fluid-solid coupling for cardiovascular blood flow: left-ventricular fluid mechanics.
    Krittian S; Janoske U; Oertel H; Böhlke T
    Ann Biomed Eng; 2010 Apr; 38(4):1426-41. PubMed ID: 20058187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of fluid friction on interstitial fluid flow coupled with blood flow through solid tumor microvascular network.
    Sefidgar M; Soltani M; Raahemifar K; Bazmara H
    Comput Math Methods Med; 2015; 2015():673426. PubMed ID: 25960764
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes.
    Klöppel T; Wall WA
    Biomech Model Mechanobiol; 2011 Jul; 10(4):445-59. PubMed ID: 20725846
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A computational model of amoeboid cell motility in the presence of obstacles.
    Campbell EJ; Bagchi P
    Soft Matter; 2018 Jul; 14(28):5741-5763. PubMed ID: 29873659
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coupled porohyperelastic mass transport (PHEXPT) finite element models for soft tissues using ABAQUS.
    Vande Geest JP; Simon BR; Rigby PH; Newberg TP
    J Biomech Eng; 2011 Apr; 133(4):044502. PubMed ID: 21428686
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Approach towards the porous fibrous structure of the periodontal ligament using micro-computerized tomography and finite element analysis.
    Ortún-Terrazas J; Cegoñino J; Santana-Penín U; Santana-Mora U; Pérez Del Palomar A
    J Mech Behav Biomed Mater; 2018 Mar; 79():135-149. PubMed ID: 29304428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluid-Structure Interaction Study of Transcatheter Aortic Valve Dynamics Using Smoothed Particle Hydrodynamics.
    Mao W; Li K; Sun W
    Cardiovasc Eng Technol; 2016 Dec; 7(4):374-388. PubMed ID: 27844463
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finite element model for nutrient distribution analysis of a hollow fiber membrane bioreactor.
    Unnikrishnan GU; Unnikrishnan VU; Reddy JN
    Int J Numer Method Biomed Eng; 2012 Feb; 28(2):229-38. PubMed ID: 25099327
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A meta-model analysis of a finite element simulation for defining poroelastic properties of intervertebral discs.
    Nikkhoo M; Hsu YC; Haghpanahi M; Parnianpour M; Wang JL
    Proc Inst Mech Eng H; 2013 Jun; 227(6):672-82. PubMed ID: 23636748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanics of the foot Part 2: A coupled solid-fluid model to investigate blood transport in the pathologic foot.
    Mithraratne K; Ho H; Hunter PJ; Fernandez JW
    Int J Numer Method Biomed Eng; 2012 Oct; 28(10):1071-81. PubMed ID: 23027636
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluid-Structure Interaction Simulation of Prosthetic Aortic Valves: Comparison between Immersed Boundary and Arbitrary Lagrangian-Eulerian Techniques for the Mesh Representation.
    Bavo AM; Rocatello G; Iannaccone F; Degroote J; Vierendeels J; Segers P
    PLoS One; 2016; 11(4):e0154517. PubMed ID: 27128798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Validation of a fluid-structure interaction model of a heart valve using the dynamic mesh method in fluent.
    Dumont K; Stijnen JM; Vierendeels J; van de Vosse FN; Verdonck PR
    Comput Methods Biomech Biomed Engin; 2004 Jun; 7(3):139-46. PubMed ID: 15512757
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cortex tissue relaxation and slow to medium load rates dependency can be captured by a two-phase flow poroelastic model.
    Urcun S; Rohan PY; Sciumè G; Bordas SPA
    J Mech Behav Biomed Mater; 2022 Feb; 126():104952. PubMed ID: 34906865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.