BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 30070844)

  • 1. Quantitative Ranking of Ligand Binding Kinetics with a Multiscale Milestoning Simulation Approach.
    Jagger BR; Lee CT; Amaro RE
    J Phys Chem Lett; 2018 Sep; 9(17):4941-4948. PubMed ID: 30070844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ranking of Ligand Binding Kinetics Using a Weighted Ensemble Approach and Comparison with a Multiscale Milestoning Approach.
    Ahn SH; Jagger BR; Amaro RE
    J Chem Inf Model; 2020 Nov; 60(11):5340-5352. PubMed ID: 32315175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Ligand Binding Kinetics Using a Markovian Milestoning with Voronoi Tessellations Multiscale Approach.
    Jagger BR; Ojha AA; Amaro RE
    J Chem Theory Comput; 2020 Aug; 16(8):5348-5357. PubMed ID: 32579371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SEEKR: Simulation Enabled Estimation of Kinetic Rates, A Computational Tool to Estimate Molecular Kinetics and Its Application to Trypsin-Benzamidine Binding.
    Votapka LW; Jagger BR; Heyneman AL; Amaro RE
    J Phys Chem B; 2017 Apr; 121(15):3597-3606. PubMed ID: 28191969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SEEKR2: Versatile Multiscale Milestoning Utilizing the OpenMM Molecular Dynamics Engine.
    Votapka LW; Stokely AM; Ojha AA; Amaro RE
    J Chem Inf Model; 2022 Jul; 62(13):3253-3262. PubMed ID: 35759413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QMrebind: incorporating quantum mechanical force field reparameterization at the ligand binding site for improved drug-target kinetics through milestoning simulations.
    Ojha AA; Votapka LW; Amaro RE
    Chem Sci; 2023 Nov; 14(45):13159-13175. PubMed ID: 38023523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale Estimation of Binding Kinetics Using Brownian Dynamics, Molecular Dynamics and Milestoning.
    Votapka LW; Amaro RE
    PLoS Comput Biol; 2015 Oct; 11(10):e1004381. PubMed ID: 26505480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Markovian Weighted Ensemble Milestoning (M-WEM): Long-Time Kinetics from Short Trajectories.
    Ray D; Stone SE; Andricioaei I
    J Chem Theory Comput; 2022 Jan; 18(1):79-95. PubMed ID: 34910499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward High-Throughput Predictive Modeling of Protein Binding/Unbinding Kinetics.
    Chiu SH; Xie L
    J Chem Inf Model; 2016 Jun; 56(6):1164-74. PubMed ID: 27159844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ScMiles2: A Script to Conduct and Analyze Milestoning Trajectories for Long Time Dynamics.
    Cardenas AE; Hunter A; Wang H; Elber R
    J Chem Theory Comput; 2022 Nov; 18(11):6952-6965. PubMed ID: 36191005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics and free energy of ligand dissociation using weighted ensemble milestoning.
    Ray D; Gokey T; Mobley DL; Andricioaei I
    J Chem Phys; 2020 Oct; 153(15):154117. PubMed ID: 33092382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting Biomolecular Binding Kinetics: A Review.
    Wang J; Do HN; Koirala K; Miao Y
    J Chem Theory Comput; 2023 Apr; 19(8):2135-2148. PubMed ID: 36989090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Weighted ensemble milestoning (WEM): A combined approach for rare event simulations.
    Ray D; Andricioaei I
    J Chem Phys; 2020 Jun; 152(23):234114. PubMed ID: 32571033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient States and Barriers from Molecular Simulations and the Milestoning Theory: Kinetics in Ligand-Protein Recognition and Compound Design.
    Tang Z; Chen SH; Chang CA
    J Chem Theory Comput; 2020 Mar; 16(3):1882-1895. PubMed ID: 32031801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selectivity and Ranking of Tight-Binding JAK-STAT Inhibitors Using Markovian Milestoning with Voronoi Tessellations.
    Ojha AA; Srivastava A; Votapka LW; Amaro RE
    J Chem Inf Model; 2023 Apr; 63(8):2469-2482. PubMed ID: 37023323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bridging scales through multiscale modeling: a case study on protein kinase A.
    Boras BW; Hirakis SP; Votapka LW; Malmstrom RD; Amaro RE; McCulloch AD
    Front Physiol; 2015; 6():250. PubMed ID: 26441670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of retinol with binding proteins: studies with rat cellular retinol-binding protein and with rat retinol-binding protein.
    Noy N; Blaner WS
    Biochemistry; 1991 Jul; 30(26):6380-6. PubMed ID: 2054343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-time methods for molecular dynamics simulations: Markov State Models and Milestoning.
    Narayan B; Yuan Y; Fathizadeh A; Elber R; Buchete NV
    Prog Mol Biol Transl Sci; 2020; 170():215-237. PubMed ID: 32145946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computation of FRAP recovery times for linker histone - chromatin binding on the basis of Brownian dynamics simulations.
    Öztürk MA; Wade RC
    Biochim Biophys Acta Gen Subj; 2020 Oct; 1864(10):129653. PubMed ID: 32512172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-activity analysis of binding kinetics for NMDA receptor competitive antagonists: the influence of conformational restriction.
    Benveniste M; Mayer ML
    Br J Pharmacol; 1991 Sep; 104(1):207-21. PubMed ID: 1686203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.