BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

620 related articles for article (PubMed ID: 30071096)

  • 21. Colorimetric detection of melamine based on methanobactin-mediated synthesis of gold nanoparticles.
    Xin JY; Zhang LX; Chen DD; Lin K; Fan HC; Wang Y; Xia CG
    Food Chem; 2015 May; 174():473-9. PubMed ID: 25529708
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aptamer-based Colorimetric Biosensing of Ochratoxin A in Fortified White Grape Wine Sample Using Unmodified Gold Nanoparticles.
    Yin X; Wang S; Liu X; He C; Tang Y; Li Q; Liu J; Su H; Tan T; Dong Y
    Anal Sci; 2017; 33(6):659-664. PubMed ID: 28603182
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensitive fluorescent detection of melamine in raw milk based on the inner filter effect of Au nanoparticles on the fluorescence of CdTe quantum dots.
    Zhang M; Cao X; Li H; Guan F; Guo J; Shen F; Luo Y; Sun C; Zhang L
    Food Chem; 2012 Dec; 135(3):1894-900. PubMed ID: 22953938
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A label-free hairpin aptamer probe for colorimetric detection of adenosine triphosphate based on the anti-aggregation of gold nanoparticles.
    Sang F; Zhang X; Liu J; Yin S; Zhang Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 217():122-127. PubMed ID: 30928837
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Colorimetric detection of bisphenol A based on unmodified aptamer and cationic polymer aggregated gold nanoparticles.
    Zhang D; Yang J; Ye J; Xu L; Xu H; Zhan S; Xia B; Wang L
    Anal Biochem; 2016 Apr; 499():51-56. PubMed ID: 26820097
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detection of chloramphenicol using a novel apta-sensing platform based on aptamer terminal-lock in milk samples.
    Javidi M; Housaindokht MR; Verdian A; Razavizadeh BM
    Anal Chim Acta; 2018 Dec; 1039():116-123. PubMed ID: 30322542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Visual detection of melamine in milk products by label-free gold nanoparticles.
    Guo L; Zhong J; Wu J; Fu F; Chen G; Zheng X; Lin S
    Talanta; 2010 Oct; 82(5):1654-8. PubMed ID: 20875559
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A highly sensitive aptamer-nanogold catalytic resonance scattering spectral assay for melamine.
    Liang A; Zhou L; Qin H; Zhang Y; Ouyang H; Jiang Z
    J Fluoresc; 2011 Sep; 21(5):1907-12. PubMed ID: 21519890
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biofunctionalized silver nanoparticles as a novel colorimetric probe for melamine detection in raw milk.
    Borase HP; Patil CD; Salunkhe RB; Suryawanshi RK; Salunke BK; Patil SV
    Biotechnol Appl Biochem; 2015; 62(5):652-62. PubMed ID: 25322814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensitive colorimetric detection of K(I) using catalytically active gold nanoparticles triggered signal amplification.
    Chen Z; Tan L; Wang S; Zhang Y; Li Y
    Biosens Bioelectron; 2016 May; 79():749-57. PubMed ID: 26774090
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A simple highly sensitive and selective aptamer-based colorimetric sensor for environmental toxins microcystin-LR in water samples.
    Li X; Cheng R; Shi H; Tang B; Xiao H; Zhao G
    J Hazard Mater; 2016 Mar; 304():474-80. PubMed ID: 26619046
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly Sensitive Colorimetric Detection of Ochratoxin A by a Label-Free Aptamer and Gold Nanoparticles.
    Luan Y; Chen J; Li C; Xie G; Fu H; Ma Z; Lu A
    Toxins (Basel); 2015 Dec; 7(12):5377-85. PubMed ID: 26690477
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Colorimetric Detection of Small Molecules in Complex Matrixes via Target-Mediated Growth of Aptamer-Functionalized Gold Nanoparticles.
    Soh JH; Lin Y; Rana S; Ying JY; Stevens MM
    Anal Chem; 2015 Aug; 87(15):7644-52. PubMed ID: 26197040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A simple, reliable and sensitive colorimetric visualization of melamine in milk by unmodified gold nanoparticles.
    Chi H; Liu B; Guan G; Zhang Z; Han MY
    Analyst; 2010 May; 135(5):1070-5. PubMed ID: 20419258
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Colorimetric detection of ractopamine and salbutamol using gold nanoparticles functionalized with melamine as a probe.
    Zhou Y; Wang P; Su X; Zhao H; He Y
    Talanta; 2013 Aug; 112():20-5. PubMed ID: 23708531
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid and sensitive detection of melamine in milk with gold nanoparticles by Surface Enhanced Raman Scattering.
    Giovannozzi AM; Rolle F; Sega M; Abete MC; Marchis D; Rossi AM
    Food Chem; 2014 Sep; 159():250-6. PubMed ID: 24767052
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Colorimetric method for the detection of melamine using in-situ formed silver nanoparticles via tannic acid.
    Alam MF; Laskar AA; Ahmed S; Shaida MA; Younus H
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Aug; 183():17-22. PubMed ID: 28432916
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid detection of melamine by DNA Walker mediated SERS sensing technique based on signal amplification function.
    Ma Y; Cui H; Chen R; Zhang R; Lin J; Ren S; Liang J; Gao Z
    Mikrochim Acta; 2024 Apr; 191(5):283. PubMed ID: 38652169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aptamer-aptamer linkage based aptasensor for highly enhanced detection of small molecules.
    Nguyen VT; Lee BH; Kim SH; Gu MB
    Biotechnol J; 2016 Jun; 11(6):843-9. PubMed ID: 27221154
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An upconversion fluorescence resonance energy transfer nanosensor for one step detection of melamine in raw milk.
    Wu Q; Long Q; Li H; Zhang Y; Yao S
    Talanta; 2015 May; 136():47-53. PubMed ID: 25702984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.