BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 30071165)

  • 1. Diphenylalanine Peptide Nanotube Energy Harvesters.
    Lee JH; Heo K; Schulz-Schönhagen K; Lee JH; Desai MS; Jin HE; Lee SW
    ACS Nano; 2018 Aug; 12(8):8138-8144. PubMed ID: 30071165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembly of diphenylalanine peptide with controlled polarization for power generation.
    Nguyen V; Zhu R; Jenkins K; Yang R
    Nat Commun; 2016 Nov; 7():13566. PubMed ID: 27857133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides.
    Guo C; Luo Y; Zhou R; Wei G
    Nanoscale; 2014 Mar; 6(5):2800-11. PubMed ID: 24468750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale Piezoelectric Properties of Self-Assembled Fmoc-FF Peptide Fibrous Networks.
    Ryan K; Beirne J; Redmond G; Kilpatrick JI; Guyonnet J; Buchete NV; Kholkin AL; Rodriguez BJ
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12702-7. PubMed ID: 25994251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular insights into diphenylalanine nanotube assembly: all-atom simulations of oligomerization.
    Jeon J; Mills CE; Shell MS
    J Phys Chem B; 2013 Apr; 117(15):3935-43. PubMed ID: 23521630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformation Dependence of Diphenylalanine Self-Assembly Structures and Dynamics: Insights from Hybrid-Resolution Simulations.
    Xiong Q; Jiang Y; Cai X; Yang F; Li Z; Han W
    ACS Nano; 2019 Apr; 13(4):4455-4468. PubMed ID: 30869864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong piezoelectricity in bioinspired peptide nanotubes.
    Kholkin A; Amdursky N; Bdikin I; Gazit E; Rosenman G
    ACS Nano; 2010 Feb; 4(2):610-4. PubMed ID: 20131852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational dynamics and aggregation behavior of piezoelectric diphenylalanine peptides in an external electric field.
    Kelly CM; Northey T; Ryan K; Brooks BR; Kholkin AL; Rodriguez BJ; Buchete NV
    Biophys Chem; 2015 Jan; 196():16-24. PubMed ID: 25240398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly of dipeptide Boc-diphenylalanine nanotubes inside electrospun polymeric fibers with strong piezoelectric response.
    Baptista RMF; de Matos Gomes E; Raposo MMM; Costa SPG; Lopes PE; Almeida B; Belsley MS
    Nanoscale Adv; 2019 Nov; 1(11):4339-4346. PubMed ID: 36134409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the Chloride Anions on the Formation of Self-Assembled Diphenylalanine Peptide Nanotubes.
    Dayarian S; Kopyl S; Bystrov V; Correia MR; Ivanov MS; Pelegova E; Kholkin A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Sep; 65(9):1563-1570. PubMed ID: 29994474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System.
    Brown N; Lei J; Zhan C; Shimon LJW; Adler-Abramovich L; Wei G; Gazit E
    ACS Nano; 2018 Apr; 12(4):3253-3262. PubMed ID: 29558116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability of diphenylalanine peptide nanotubes in solution.
    Andersen KB; Castillo-Leon J; Hedström M; Svendsen WE
    Nanoscale; 2011 Mar; 3(3):994-8. PubMed ID: 21132174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembling diphenylalanine peptide nanotubes selectively eradicate bacterial biofilm infection.
    Porter SL; Coulter SM; Pentlavalli S; Thompson TP; Laverty G
    Acta Biomater; 2018 Sep; 77():96-105. PubMed ID: 30031161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular modeling and computational study of the chiral-dependent structures and properties of self-assembling diphenylalanine peptide nanotubes.
    Bystrov VS; Zelenovskiy PS; Nuraeva AS; Kopyl S; Zhulyabina OA; Tverdislov VA
    J Mol Model; 2019 Jun; 25(7):199. PubMed ID: 31240406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical, interface-induced self-assembly of diphenylalanine: formation of peptide nanofibers and microvesicles.
    Huang R; Su R; Qi W; Zhao J; He Z
    Nanotechnology; 2011 Jun; 22(24):245609. PubMed ID: 21543826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High voltage generation from lead-free magnetoelectric coaxial nanotube arrays and their applications in nano energy harvesters.
    Lekha CS; Kumar AS; Vivek S; Rasi UP; Saravanan KV; Nandakumar K; Nair SS
    Nanotechnology; 2017 Feb; 28(5):055402. PubMed ID: 28008890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Water Self-Diffusion in Diphenylalanine Peptide Nanotubes.
    Zelenovskiy PS; Domingues EM; Slabov V; Kopyl S; Ugolkov VL; Figueiredo FML; Kholkin AL
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27485-27492. PubMed ID: 32463652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly of cyclo-diphenylalanine peptides in vacuum.
    Jeon J; Shell MS
    J Phys Chem B; 2014 Jun; 118(24):6644-52. PubMed ID: 24877752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-frequency Raman scattering of bioinspired self-assembled diphenylalanine nanotubes/microtubes.
    Wu X; Xiong S; Wang M; Shen J; Chu PK
    Opt Express; 2012 Feb; 20(5):5119-26. PubMed ID: 22418317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of the Biodegradability of Piezoelectric Peptide Nanotubes Integrated with Hydrophobic Porphyrin.
    Kim Y; Park H; Kim Y; Lee C; Park H; Lee JH
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):38778-38785. PubMed ID: 35983899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.