BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30071179)

  • 1. A new conceptual framework for the integrated neural control of locomotor and sympathetic function: implications for exercise after spinal cord injury.
    Cowley KC
    Appl Physiol Nutr Metab; 2018 Nov; 43(11):1140-1150. PubMed ID: 30071179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal electrical stimulation to improve sympathetic autonomic functions needed for movement and exercise after spinal cord injury: a scoping clinical review.
    Flett S; Garcia J; Cowley KC
    J Neurophysiol; 2022 Sep; 128(3):649-670. PubMed ID: 35894427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lumbar V3 interneurons provide direct excitatory synaptic input onto thoracic sympathetic preganglionic neurons, linking locomotor, and autonomic spinal systems.
    Chacon C; Nwachukwu CV; Shahsavani N; Cowley KC; Chopek JW
    Front Neural Circuits; 2023; 17():1235181. PubMed ID: 37701071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Descending pathways modulating the spinal circuitry for ejaculation: effects of chronic spinal cord injury.
    Johnson RD
    Prog Brain Res; 2006; 152():415-26. PubMed ID: 16198717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sympathetic premotor neurons mediating thermoregulatory functions.
    Nakamura K; Matsumura K; Kobayashi S; Kaneko T
    Neurosci Res; 2005 Jan; 51(1):1-8. PubMed ID: 15596234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time course of locomotor recovery and functional regeneration in spinal cord-transected lamprey: in vitro preparations.
    McClellan AD
    J Neurophysiol; 1994 Aug; 72(2):847-60. PubMed ID: 7983540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A brainstem monosynaptic excitatory pathway that drives locomotor activities and sympathetic cardiovascular responses.
    Koba S; Kumada N; Narai E; Kataoka N; Nakamura K; Watanabe T
    Nat Commun; 2022 Aug; 13(1):5079. PubMed ID: 36038592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Locomotor control by the brainstem and spinal cord].
    Takakusaki K; Matsuyama K
    Brain Nerve; 2010 Nov; 62(11):1117-28. PubMed ID: 21068448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholinergic mechanisms in spinal locomotion-potential target for rehabilitation approaches.
    Jordan LM; McVagh JR; Noga BR; Cabaj AM; Majczyński H; Sławińska U; Provencher J; Leblond H; Rossignol S
    Front Neural Circuits; 2014; 8():132. PubMed ID: 25414645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initiation of locomotion in lampreys.
    Dubuc R; Brocard F; Antri M; Fénelon K; Gariépy JF; Smetana R; Ménard A; Le Ray D; Viana Di Prisco G; Pearlstein E; Sirota MG; Derjean D; St-Pierre M; Zielinski B; Auclair F; Veilleux D
    Brain Res Rev; 2008 Jan; 57(1):172-82. PubMed ID: 17916380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exercise-Induced Alterations in Sympathetic-Somatomotor Coupling in Incomplete Spinal Cord Injury.
    Onushko T; Mahtani GB; Brazg G; Hornby TG; Schmit BD
    J Neurotrauma; 2019 Sep; 36(18):2688-2697. PubMed ID: 30696387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the serotonergic system in locomotor recovery after spinal cord injury.
    Ghosh M; Pearse DD
    Front Neural Circuits; 2014; 8():151. PubMed ID: 25709569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sympathetic rhythms and nervous integration.
    Gilbey MP
    Clin Exp Pharmacol Physiol; 2007 Apr; 34(4):356-61. PubMed ID: 17324150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Specialization of the descending sympatho-activating pathways of the dorsolateral funiculus of the spinal cord].
    Khimonidi RK; Baklavadzhian OG; Lebedev VP; Sarukhanian RV
    Fiziol Zh SSSR Im I M Sechenova; 1980 Jul; 66(7):1031-8. PubMed ID: 7409260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Descending command systems for the initiation of locomotion in mammals.
    Jordan LM; Liu J; Hedlund PB; Akay T; Pearson KG
    Brain Res Rev; 2008 Jan; 57(1):183-91. PubMed ID: 17928060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinal and supraspinal plasticity after incomplete spinal cord injury: correlations between functional magnetic resonance imaging and engaged locomotor networks.
    Dobkin BH
    Prog Brain Res; 2000; 128():99-111. PubMed ID: 11105672
    [No Abstract]   [Full Text] [Related]  

  • 17. Spinal sympathetic interneurons: their identification and roles after spinal cord injury.
    Schramm LP
    Prog Brain Res; 2006; 152():27-37. PubMed ID: 16198691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elimination of Left-Right Reciprocal Coupling in the Adult Lamprey Spinal Cord Abolishes the Generation of Locomotor Activity.
    Messina JA; St Paul A; Hargis S; Thompson WE; McClellan AD
    Front Neural Circuits; 2017; 11():89. PubMed ID: 29225569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rehabilitation Strategies after Spinal Cord Injury: Inquiry into the Mechanisms of Success and Failure.
    Côté MP; Murray M; Lemay MA
    J Neurotrauma; 2017 May; 34(10):1841-1857. PubMed ID: 27762657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural plasticity after human spinal cord injury: application of locomotor training to the rehabilitation of walking.
    Harkema SJ
    Neuroscientist; 2001 Oct; 7(5):455-68. PubMed ID: 11597104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.