These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 30071193)

  • 1. Cholesterol and phosphatidylethanolamine lipids exert opposite effects on membrane modulations caused by the M2 amphipathic helix.
    Pan J; Dalzini A; Song L
    Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):201-209. PubMed ID: 30071193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cholesterol Alters the Orientation and Activity of the Influenza Virus M2 Amphipathic Helix in the Membrane.
    Martyna A; Bahsoun B; Madsen JJ; Jackson FSJS; Badham MD; Voth GA; Rossman JS
    J Phys Chem B; 2020 Aug; 124(31):6738-6747. PubMed ID: 32644803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid Extraction by α-Synuclein Generates Semi-Transmembrane Defects and Lipoprotein Nanoparticles.
    Pan J; Dalzini A; Khadka NK; Aryal CM; Song L
    ACS Omega; 2018 Aug; 3(8):9586-9597. PubMed ID: 30198000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The helix 0 of endophilin modifies membrane material properties and induces local curvature.
    Aryal CM; Bui NN; Khadka NK; Song L; Pan J
    Biochim Biophys Acta Biomembr; 2020 Oct; 1862(10):183397. PubMed ID: 32533976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid shape is a key factor for membrane interactions of amphipathic helical peptides.
    Strandberg E; Tiltak D; Ehni S; Wadhwani P; Ulrich AS
    Biochim Biophys Acta; 2012 Jul; 1818(7):1764-76. PubMed ID: 22409944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulations of simple Bovine and Homo sapiens outer cortex ocular lens membrane models with a majority concentration of cholesterol.
    Adams M; Wang E; Zhuang X; Klauda JB
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):2134-2144. PubMed ID: 29169746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic Force Microscopy Imaging and Force Spectroscopy of Supported Lipid Bilayers.
    Unsay JD; Cosentino K; García-Sáez AJ
    J Vis Exp; 2015 Jul; (101):e52867. PubMed ID: 26273958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of hydrogen bonding to lipid-lipid interactions in membranes and the role of lipid order: effects of cholesterol, increased phospholipid unsaturation, and ethanol.
    Slater SJ; Ho C; Taddeo FJ; Kelly MB; Stubbs CD
    Biochemistry; 1993 Apr; 32(14):3714-21. PubMed ID: 8466911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholesterol induced asymmetry in DOPC bilayers probed by AFM force spectroscopy.
    Adhyapak PR; Panchal SV; Murthy AVR
    Biochim Biophys Acta Biomembr; 2018 May; 1860(5):953-959. PubMed ID: 29408513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The N-terminal helices of amphiphysin and endophilin have different capabilities of membrane remodeling.
    Aryal CM; Bui NN; Song L; Pan J
    Biochim Biophys Acta Biomembr; 2022 Jul; 1864(7):183907. PubMed ID: 35247332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the interactions of the HIV-1 matrix protein-derived polybasic region with lipid bilayers: insights from AFM imaging and force spectroscopy.
    Aryal CM; Pan J
    Eur Biophys J; 2024 Feb; 53(1-2):57-67. PubMed ID: 38172352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastic deformation of membrane bilayers probed by deuterium NMR relaxation.
    Brown MF; Thurmond RL; Dodd SW; Otten D; Beyer K
    J Am Chem Soc; 2002 Jul; 124(28):8471-84. PubMed ID: 12105929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane composition determines pardaxin's mechanism of lipid bilayer disruption.
    Hallock KJ; Lee DK; Omnaas J; Mosberg HI; Ramamoorthy A
    Biophys J; 2002 Aug; 83(2):1004-13. PubMed ID: 12124282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin-label electron spin resonance studies on the mode of anchoring and vertical location of the N-acyl chain in N-acylphosphatidylethanolamines.
    Swamy MJ; Ramakrishnan M; Angerstein B; Marsh D
    Biochemistry; 2000 Oct; 39(40):12476-84. PubMed ID: 11015229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Curvature Sensing by a Viral Scission Protein.
    Martyna A; Gómez-Llobregat J; Lindén M; Rossman JS
    Biochemistry; 2016 Jun; 55(25):3493-6. PubMed ID: 27299375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholesterol-induced microdomain formation in lipid bilayer membranes consisting of completely miscible lipids.
    Goh MWS; Tero R
    Biochim Biophys Acta Biomembr; 2021 Aug; 1863(8):183626. PubMed ID: 33901442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies.
    Zhang YP; Lewis RN; Hodges RS; McElhaney RN
    Biophys J; 1995 Mar; 68(3):847-57. PubMed ID: 7756552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interfacial tension of the lipid membrane formed from lipid-cholesterol and lipid-lipid systems.
    Petelska AD; Naumowicz M; Figaszewski ZA
    Cell Biochem Biophys; 2006; 44(2):205-11. PubMed ID: 16456222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure analysis of the membrane-bound dermcidin-derived peptide SSL-25 from human sweat.
    Mühlhäuser P; Wadhwani P; Strandberg E; Bürck J; Ulrich AS
    Biochim Biophys Acta Biomembr; 2017 Dec; 1859(12):2308-2318. PubMed ID: 28888369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholesterol attenuates and prevents bilayer damage and breakdown in lipoperoxidized model membranes. A spin labeling EPR study.
    Megli FM; Conte E; Ishikawa T
    Biochim Biophys Acta; 2011 Sep; 1808(9):2267-74. PubMed ID: 21600189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.