These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 30071193)
21. Nanoscale Perturbations of Lipid Bilayers Induced by Magainin 2: Insights from AFM Imaging and Force Spectroscopy. Gamage YI; Pan J Chem Phys Lipids; 2024 Sep; 263():105421. PubMed ID: 39067642 [TBL] [Abstract][Full Text] [Related]
22. Influence of Lipid Saturation, Hydrophobic Length and Cholesterol on Double-Arginine-Containing Helical Peptides in Bilayer Membranes. Lipinski K; McKay MJ; Afrose F; Martfeld AN; Koeppe RE; Greathouse DV Chembiochem; 2019 Nov; 20(21):2784-2792. PubMed ID: 31150136 [TBL] [Abstract][Full Text] [Related]
23. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199 [TBL] [Abstract][Full Text] [Related]
24. Vesicle and bilayer formation of diphytanoylphosphatidylcholine (DPhPC) and diphytanoylphosphatidylethanolamine (DPhPE) mixtures and their bilayers' electrical stability. Andersson M; Jackman J; Wilson D; Jarvoll P; Alfredsson V; Okeyo G; Duran R Colloids Surf B Biointerfaces; 2011 Feb; 82(2):550-61. PubMed ID: 21071188 [TBL] [Abstract][Full Text] [Related]
25. Lipid peroxidation and water penetration in lipid bilayers: a W-band EPR study. Conte E; Megli FM; Khandelia H; Jeschke G; Bordignon E Biochim Biophys Acta; 2013 Feb; 1828(2):510-7. PubMed ID: 23036933 [TBL] [Abstract][Full Text] [Related]
26. Stalk formation as a function of lipid composition studied by X-ray reflectivity. Khattari Z; Köhler S; Xu Y; Aeffner S; Salditt T Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):41-50. PubMed ID: 25261611 [TBL] [Abstract][Full Text] [Related]
28. Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures. Huster D; Arnold K; Gawrisch K Biochemistry; 1998 Dec; 37(49):17299-308. PubMed ID: 9860844 [TBL] [Abstract][Full Text] [Related]
29. Structural transitions in short-chain lipid assemblies studied by (31)P-NMR spectroscopy. Kleinschmidt JH; Tamm LK Biophys J; 2002 Aug; 83(2):994-1003. PubMed ID: 12124281 [TBL] [Abstract][Full Text] [Related]
30. Detection of cholesterol bilayer domains in intact biological membranes: Methodology development and its application to studies of eye lens fiber cell plasma membranes. Mainali L; O'Brien WJ; Subczynski WK Exp Eye Res; 2019 Jan; 178():72-81. PubMed ID: 30278157 [TBL] [Abstract][Full Text] [Related]
31. Cholesterol-binding site of the influenza M2 protein in lipid bilayers from solid-state NMR. Elkins MR; Williams JK; Gelenter MD; Dai P; Kwon B; Sergeyev IV; Pentelute BL; Hong M Proc Natl Acad Sci U S A; 2017 Dec; 114(49):12946-12951. PubMed ID: 29158386 [TBL] [Abstract][Full Text] [Related]
32. Interactions of oritavancin, a new lipoglycopeptide derived from vancomycin, with phospholipid bilayers: Effect on membrane permeability and nanoscale lipid membrane organization. Domenech O; Francius G; Tulkens PM; Van Bambeke F; Dufrêne Y; Mingeot-Leclercq MP Biochim Biophys Acta; 2009 Sep; 1788(9):1832-40. PubMed ID: 19450541 [TBL] [Abstract][Full Text] [Related]
33. Influence of lipid composition on physical properties and peg-mediated fusion of curved and uncurved model membrane vesicles: "nature's own" fusogenic lipid bilayer. Haque ME; McIntosh TJ; Lentz BR Biochemistry; 2001 Apr; 40(14):4340-8. PubMed ID: 11284690 [TBL] [Abstract][Full Text] [Related]
34. Roles of curvature and hydrophobic interstice energy in fusion: studies of lipid perturbant effects. Haque ME; Lentz BR Biochemistry; 2004 Mar; 43(12):3507-17. PubMed ID: 15035621 [TBL] [Abstract][Full Text] [Related]
35. Temperature induced lipid membrane restructuring and changes in nanomechanics. Bhojoo U; Chen M; Zou S Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):700-709. PubMed ID: 29248477 [TBL] [Abstract][Full Text] [Related]
36. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes. Wiśniewska A; Draus J; Subczynski WK Cell Mol Biol Lett; 2003; 8(1):147-59. PubMed ID: 12655369 [TBL] [Abstract][Full Text] [Related]
37. Solid-state NMR investigation of the selective perturbation of lipid bilayers by the cyclic antimicrobial peptide RTD-1. Buffy JJ; McCormick MJ; Wi S; Waring A; Lehrer RI; Hong M Biochemistry; 2004 Aug; 43(30):9800-12. PubMed ID: 15274634 [TBL] [Abstract][Full Text] [Related]
38. Effect of drastic sequence alteration and D-amino acid incorporation on the membrane binding behavior of lytic peptides. Papo N; Shai Y Biochemistry; 2004 Jun; 43(21):6393-403. PubMed ID: 15157073 [TBL] [Abstract][Full Text] [Related]
39. Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane. Gurtovenko AA; Vattulainen I J Phys Chem B; 2008 Feb; 112(7):1953-62. PubMed ID: 18225878 [TBL] [Abstract][Full Text] [Related]
40. Membrane domain modulation of Aβ Azouz M; Cullin C; Lecomte S; Lafleur M Nanoscale; 2019 Nov; 11(43):20857-20867. PubMed ID: 31657431 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]