These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 30071193)
41. Young modulus of supported lipid membranes containing milk sphingomyelin in the gel, fluid or liquid-ordered phase, determined using AFM force spectroscopy. Et-Thakafy O; Guyomarc'h F; Lopez C Biochim Biophys Acta Biomembr; 2019 Sep; 1861(9):1523-1532. PubMed ID: 31295476 [TBL] [Abstract][Full Text] [Related]
42. Interactions between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain-backbone linkage. Bhattacharya S; Haldar S Biochim Biophys Acta; 2000 Jul; 1467(1):39-53. PubMed ID: 10930507 [TBL] [Abstract][Full Text] [Related]
43. The distribution of lipid attached spin probes in bilayers: application to membrane protein topology. Vogel A; Scheidt HA; Huster D Biophys J; 2003 Sep; 85(3):1691-701. PubMed ID: 12944284 [TBL] [Abstract][Full Text] [Related]
44. Effect of hydrogen bonding on the rotational and translational dynamics of a headgroup-bound chromophore in bilayer lipid membranes. Greiner AJ; Pillman HA; Worden RM; Blanchard GJ; Ofoli RY J Phys Chem B; 2009 Oct; 113(40):13263-8. PubMed ID: 19761197 [TBL] [Abstract][Full Text] [Related]
45. Nonpolar interactions between trans-membrane helical EGF peptide and phosphatidylcholines, sphingomyelins and cholesterol. Molecular dynamics simulation studies. Róg T; Murzyn K; Karttunen M; Pasenkiewicz-Gierula M J Pept Sci; 2008 Apr; 14(4):374-82. PubMed ID: 17985365 [TBL] [Abstract][Full Text] [Related]
46. Membrane-dependent oligomeric structure and pore formation of a beta-hairpin antimicrobial peptide in lipid bilayers from solid-state NMR. Mani R; Cady SD; Tang M; Waring AJ; Lehrer RI; Hong M Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16242-7. PubMed ID: 17060626 [TBL] [Abstract][Full Text] [Related]
47. On the microscopic and mesoscopic perturbations of lipid bilayers upon interaction with the MPER domain of the HIV glycoprotein gp41. Oliva R; Emendato A; Vitiello G; De Santis A; Grimaldi M; D'Ursi AM; Busi E; Del Vecchio P; Petraccone L; D'Errico G Biochim Biophys Acta; 2016 Aug; 1858(8):1904-13. PubMed ID: 27179640 [TBL] [Abstract][Full Text] [Related]
48. Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides. Epand RM; Shai Y; Segrest JP; Anantharamaiah GM Biopolymers; 1995; 37(5):319-38. PubMed ID: 7632881 [TBL] [Abstract][Full Text] [Related]
49. Influence of cholesterol on the phase transition of lipid bilayers: a temperature-controlled force spectroscopy study. Redondo-Morata L; Giannotti MI; Sanz F Langmuir; 2012 Sep; 28(35):12851-60. PubMed ID: 22873775 [TBL] [Abstract][Full Text] [Related]
50. The membrane environment modulates self-association of the human GpA TM domain--implications for membrane protein folding and transmembrane signaling. Anbazhagan V; Schneider D Biochim Biophys Acta; 2010 Oct; 1798(10):1899-907. PubMed ID: 20603102 [TBL] [Abstract][Full Text] [Related]
52. Nanoscale dynamics of phospholipids reveals an optimal assembly mechanism of pore-forming proteins in bilayer membranes. Sarangi NK; Ayappa KG; Visweswariah SS; Basu JK Phys Chem Chem Phys; 2016 Nov; 18(43):29935-29945. PubMed ID: 27762416 [TBL] [Abstract][Full Text] [Related]
53. Effects of aromatic residues at the ends of transmembrane alpha-helices on helix interactions with lipid bilayers. Mall S; Broadbridge R; Sharma RP; Lee AG; East JM Biochemistry; 2000 Feb; 39(8):2071-8. PubMed ID: 10684657 [TBL] [Abstract][Full Text] [Related]
54. Organization and dynamics of NBD-labeled lipids in lipid bilayer analyzed by FRET using the small membrane fluorescent probe AHBA as donor. Marquezin CA; Ito AS; de Souza ES Biochim Biophys Acta Biomembr; 2019 Oct; 1861(10):182995. PubMed ID: 31136733 [TBL] [Abstract][Full Text] [Related]
55. Effect of ion-binding and chemical phospholipid structure on the nanomechanics of lipid bilayers studied by force spectroscopy. Garcia-Manyes S; Oncins G; Sanz F Biophys J; 2005 Sep; 89(3):1812-26. PubMed ID: 15980180 [TBL] [Abstract][Full Text] [Related]
56. Solid-state NMR investigation of the selective disruption of lipid membranes by protegrin-1. Mani R; Buffy JJ; Waring AJ; Lehrer RI; Hong M Biochemistry; 2004 Nov; 43(43):13839-48. PubMed ID: 15504046 [TBL] [Abstract][Full Text] [Related]