These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 30071299)
1. Iron from a geochemical viewpoint. Understanding toxicity/pathogenicity mechanisms in iron-bearing minerals with a special attention to mineral fibers. Gualtieri AF; Andreozzi GB; Tomatis M; Turci F Free Radic Biol Med; 2019 Mar; 133():21-37. PubMed ID: 30071299 [TBL] [Abstract][Full Text] [Related]
2. The chemical environment of iron in mineral fibres. A combined X-ray absorption and Mössbauer spectroscopic study. Pollastri S; D'Acapito F; Trapananti A; Colantoni I; Andreozzi GB; Gualtieri AF J Hazard Mater; 2015 Nov; 298():282-93. PubMed ID: 26073382 [TBL] [Abstract][Full Text] [Related]
3. Critical roles of low-molecular-weight organic acid in enhancing hydroxyl radical production by ferrous oxidation on γ-Al Wen N; Liu J; Qin W; Wang X; Zhu C; Zhou D Water Res; 2024 Sep; 261():122052. PubMed ID: 38991245 [TBL] [Abstract][Full Text] [Related]
4. Fe-Impregnated Mineral Colloids for Peroxide Activation: Effects of Mineral Substrate and Fe Precursor. Li Y; Machala L; Yan W Environ Sci Technol; 2016 Feb; 50(3):1190-9. PubMed ID: 26713453 [TBL] [Abstract][Full Text] [Related]
5. Insights into phenanthrene attenuation by hydroxyl radicals from reduced iron-bearing mineral oxygenation. Wang L; Du H; Xu H; Li H; Li L J Hazard Mater; 2022 Oct; 439():129658. PubMed ID: 35901635 [TBL] [Abstract][Full Text] [Related]
6. Using yeast RNA as a probe for generation of hydroxyl radicals by earth materials. Cohn CA; Laffers R; Schoonen MA Environ Sci Technol; 2006 Apr; 40(8):2838-43. PubMed ID: 16683632 [TBL] [Abstract][Full Text] [Related]
7. Water Vapor Condensation on Iron Minerals Spontaneously Produces Hydroxyl Radical. Pan Y; Zheng X; Zhao G; Rao Z; Yu W; Chen B; Chu C Environ Sci Technol; 2023 Jun; 57(23):8610-8616. PubMed ID: 37226678 [TBL] [Abstract][Full Text] [Related]
8. Insights into the Crystallinity-Dependent Photochemical Productions of Reactive Oxygen Species from Iron Minerals. Wang J; Wu B; Zheng X; Ma J; Yu W; Chen B; Chu C Environ Sci Technol; 2024 Jun; 58(24):10623-10631. PubMed ID: 38781516 [TBL] [Abstract][Full Text] [Related]
9. Mineralogical and microscopic evaluation of coarse taconite tailings from Minnesota taconite operations. Zanko LM; Niles HB; Oreskovich JA Regul Toxicol Pharmacol; 2008 Oct; 52(1 Suppl):S51-65. PubMed ID: 18166256 [TBL] [Abstract][Full Text] [Related]
10. The effect of weathering on ecopersistence, reactivity, and potential toxicity of naturally occurring asbestos and asbestiform minerals. Enrico Favero-Longo S; Turci F; Tomatis M; Compagnoni R; Piervittori R; Fubini B J Toxicol Environ Health A; 2009; 72(5):305-14. PubMed ID: 19184746 [TBL] [Abstract][Full Text] [Related]
11. A comparative Mössbauer study of the mineral cores of human H-chain ferritin employing dioxygen and hydrogen peroxide as iron oxidants. Bou-Abdallah F; Carney E; Chasteen ND; Arosio P; Viescas AJ; Papaefthymiou GC Biophys Chem; 2007 Nov; 130(3):114-21. PubMed ID: 17881115 [TBL] [Abstract][Full Text] [Related]
12. Investigating the effect of ascorbate on the Fe(II)-catalyzed transformation of the poorly crystalline iron mineral ferrihydrite. Xiao W; Jones AM; Collins RN; Waite TD Biochim Biophys Acta Gen Subj; 2018 Aug; 1862(8):1760-1769. PubMed ID: 29751097 [TBL] [Abstract][Full Text] [Related]
13. Water Vapor Condensation Triggers Simultaneous Oxidation and Hydrolysis of Organic Pollutants on Iron Mineral Surfaces. Pan Y; Rao Z; Yu W; Chen B; Chu C Environ Sci Technol; 2024 Jul; 58(27):12147-12154. PubMed ID: 38934559 [TBL] [Abstract][Full Text] [Related]
14. FeO2 and FeOOH under deep lower-mantle conditions and Earth's oxygen-hydrogen cycles. Hu Q; Kim DY; Yang W; Yang L; Meng Y; Zhang L; Mao HK Nature; 2016 Jun; 534(7606):241-4. PubMed ID: 27279220 [TBL] [Abstract][Full Text] [Related]
15. Electron transfer between iron minerals and quinones: estimating the reduction potential of the Fe(II)-goethite surface from AQDS speciation. Orsetti S; Laskov C; Haderlein SB Environ Sci Technol; 2013 Dec; 47(24):14161-8. PubMed ID: 24266388 [TBL] [Abstract][Full Text] [Related]
17. Fenten chemistry of Fe(III)-exchanged zeolitic minerals treated with antioxidants. Ruda TA; Dutta PK Environ Sci Technol; 2005 Aug; 39(16):6147-52. PubMed ID: 16173575 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical analyses of redox-active iron minerals: a review of nonmediated and mediated approaches. Sander M; Hofstetter TB; Gorski CA Environ Sci Technol; 2015 May; 49(10):5862-78. PubMed ID: 25856208 [TBL] [Abstract][Full Text] [Related]
19. 3-D analysis of bacterial cell-(iron)mineral aggregates formed during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1 using complementary microscopy tomography approaches. Schmid G; Zeitvogel F; Hao L; Ingino P; Floetenmeyer M; Stierhof YD; Schroeppel B; Burkhardt CJ; Kappler A; Obst M Geobiology; 2014 Jul; 12(4):340-61. PubMed ID: 24828365 [TBL] [Abstract][Full Text] [Related]
20. Mineral properties and their contributions to particle toxicity. Guthrie GD Environ Health Perspect; 1997 Sep; 105 Suppl 5(Suppl 5):1003-11. PubMed ID: 9400692 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]