These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 30071463)
21. Jute stick pyrolysis for bio-oil production in fluidized bed reactor. Asadullah M; Anisur Rahman M; Mohsin Ali M; Abdul Motin M; Borhanus Sultan M; Robiul Alam M; Sahedur Rahman M Bioresour Technol; 2008 Jan; 99(1):44-50. PubMed ID: 17267214 [TBL] [Abstract][Full Text] [Related]
22. Recovery of energy and iron from oily sludge pyrolysis in a fluidized bed reactor. Qin L; Han J; He X; Zhan Y; Yu F J Environ Manage; 2015 May; 154():177-82. PubMed ID: 25728916 [TBL] [Abstract][Full Text] [Related]
23. Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor. Yuan T; Tahmasebi A; Yu J Bioresour Technol; 2015 Jan; 175():333-41. PubMed ID: 25459840 [TBL] [Abstract][Full Text] [Related]
24. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge. Wang X; Li C; Li Z; Yu G; Wang Y Ecotoxicol Environ Saf; 2019 Jan; 168():45-52. PubMed ID: 30384166 [TBL] [Abstract][Full Text] [Related]
25. Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production. Xie Q; Peng P; Liu S; Min M; Cheng Y; Wan Y; Li Y; Lin X; Liu Y; Chen P; Ruan R Bioresour Technol; 2014 Nov; 172():162-168. PubMed ID: 25260179 [TBL] [Abstract][Full Text] [Related]
26. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres. Zhang H; Xiao R; Wang D; He G; Shao S; Zhang J; Zhong Z Bioresour Technol; 2011 Mar; 102(5):4258-64. PubMed ID: 21232946 [TBL] [Abstract][Full Text] [Related]
27. Pyrolysis of vegetable oil soapstock in fluidized bed: Characteristics of thermal decomposition and analysis of pyrolysis products. Yu M; Zhang C; Li X; Liu Y; Li X; Qu J; Dai J; Zhou C; Yuan Y; Jin Y; Zhang Y; Fu J; Yu H; Wang L; Liu C; Li Y Sci Total Environ; 2022 Sep; 838(Pt 2):155412. PubMed ID: 35569655 [TBL] [Abstract][Full Text] [Related]
28. Microwave pyrolysis of oily sludge under different control modes. Liu Y; Yu H; Jiang Z; Song Y; Zhang T; Siyal AA; Dai J; Bi X; Fu J; Ao W; Zhou C; Wang L; Li X; Jin X; Teng D; Fang J J Hazard Mater; 2021 Aug; 416():125887. PubMed ID: 34492825 [TBL] [Abstract][Full Text] [Related]
29. Products distribution and sulfur fixation during the pyrolysis of CaO conditioned textile dyeing sludge: Effects of pyrolysis temperature and heating rate. Cao C; Cheng Y; Hu H; Wang H; Liu S; Hu M; Li X; Yao H Waste Manag; 2022 Nov; 153():367-375. PubMed ID: 36191497 [TBL] [Abstract][Full Text] [Related]
30. Effects of temperature and composite alumina on pyrolysis of sewage sludge. Sun Y; Jin B; Wu W; Zuo W; Zhang Y; Zhang Y; Huang Y J Environ Sci (China); 2015 Apr; 30():1-8. PubMed ID: 25872704 [TBL] [Abstract][Full Text] [Related]
31. Catalytic pyrolysis of palm kernel shell waste in a fluidized bed. Kim SW; Koo BS; Lee DH Bioresour Technol; 2014 Sep; 167():425-32. PubMed ID: 25006017 [TBL] [Abstract][Full Text] [Related]
32. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor. Morgan TJ; Turn SQ; George A PLoS One; 2015; 10(8):e0136511. PubMed ID: 26308860 [TBL] [Abstract][Full Text] [Related]
33. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating. Domínguez A; Menéndez JA; Inguanzo M; Pís JJ Bioresour Technol; 2006 Jul; 97(10):1185-93. PubMed ID: 16473008 [TBL] [Abstract][Full Text] [Related]
34. Evaluation of waste pyrolysis characteristics in a pressurized fluidized bed reactor. Ono A; Kurita M; Nagashima T; Horio M Waste Manag; 2001; 21(5):451-6. PubMed ID: 11280986 [TBL] [Abstract][Full Text] [Related]
35. Effect of fractionation and pyrolysis on fuel properties of poultry litter. Singh K; Risse LM; Das KC; Worley J; Thompson S J Air Waste Manag Assoc; 2010 Jul; 60(7):875-83. PubMed ID: 20681435 [TBL] [Abstract][Full Text] [Related]
36. Evaluation of co-pyrolysis petrochemical wastewater sludge with lignite in a thermogravimetric analyzer and a packed-bed reactor: Pyrolysis characteristics, kinetics, and products analysis. Mu L; Chen J; Yao P; Zhou D; Zhao L; Yin H Bioresour Technol; 2016 Dec; 221():147-156. PubMed ID: 27639233 [TBL] [Abstract][Full Text] [Related]
37. Nitrogen transformation during pyrolysis of oilfield sludge with high polymer content. Wang Y; Dong B; Fan Y; Hu Y; Zhai X; Deng C; Xu Y; Shen D; Dai X Chemosphere; 2019 Mar; 219():383-389. PubMed ID: 30551104 [TBL] [Abstract][Full Text] [Related]
38. Characterization of Japanese cedar bio-oil produced using a bench-scale auger pyrolyzer. Kato Y; Enomoto R; Akazawa M; Kojima Y Springerplus; 2016; 5():177. PubMed ID: 27047705 [TBL] [Abstract][Full Text] [Related]
39. Pyrolysis derived char from municipal and industrial sludge: Impact of organic decomposition and inorganic accumulation on the fuel characteristics of char. Chanaka Udayanga WD; Veksha A; Giannis A; Lim TT Waste Manag; 2019 Jan; 83():131-141. PubMed ID: 30514459 [TBL] [Abstract][Full Text] [Related]
40. Upgrading gas and oil products of the municipal solid waste pyrolysis process by exploiting in-situ interactions between the volatile compounds and the char. Wang N; Qian K; Chen D; Zhao H; Yin L Waste Manag; 2020 Feb; 102():380-390. PubMed ID: 31733562 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]