These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 30071633)

  • 1. Analytical Model for the Duty Cycle in Solar-Based EH-WSN for Environmental Monitoring.
    Galmés S; Escolar S
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30071633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal Routing for Time-Driven EH-WSN under Regular Energy Sources.
    Galmés S
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30469409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New Approach to Design Autonomous Wireless Sensor Node Based on RF Energy Harvesting System.
    Mouapi A; Hakem N
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29304002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors.
    Srbinovski B; Magno M; Edwards-Murphy F; Pakrashi V; Popovici E
    Sensors (Basel); 2016 Mar; 16(4):448. PubMed ID: 27043559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System.
    Wu F; Rüdiger C; Yuce MR
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28157148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards the Structural Health Monitoring of Bridges Using Wireless Sensor Networks: A Systematic Study.
    Sonbul OS; Rashid M
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant Microbial Fuel Cells⁻Based Energy Harvester System for Self-powered IoT Applications.
    Osorio de la Rosa E; Vázquez Castillo J; Carmona Campos M; Barbosa Pool GR; Becerra Nuñez G; Castillo Atoche A; Ortegón Aguilar J
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30897710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. La-CTP: Loop-Aware Routing for Energy-Harvesting Wireless Sensor Networks.
    Sun G; Shang X; Zuo Y
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29393876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive Data Aggregation and Compression to Improve Energy Utilization in Solar-Powered Wireless Sensor Networks.
    Yoon I; Kim H; Noh DK
    Sensors (Basel); 2017 May; 17(6):. PubMed ID: 28555010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy scavenging for long-term deployable wireless sensor networks.
    Mathúna CO; O'Donnell T; Martinez-Catala RV; Rohan J; O'Flynn B
    Talanta; 2008 May; 75(3):613-23. PubMed ID: 18585122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Latency and Energy-Efficient Data Preservation Mechanism in Low-Duty-Cycle Sensor Networks.
    Jiang C; Li TS; Liang JB; Wu H
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28481274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Survey on the Evolution of Opportunistic Routing with Asynchronous Duty-Cycled MAC in Wireless Sensor Networks.
    Lata AA; Kang M
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32718100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Outage Performance Analysis and SWIPT Optimization in Energy-Harvesting Wireless Sensor Network Deploying NOMA.
    Nguyen HS; Ly TTH; Nguyen TS; Huynh VV; Nguyen TL; Voznak M
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30717155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Framework to Design the Computational Load Distribution of Wireless Sensor Networks in Power Consumption Constrained Environments.
    Sánchez-Álvarez D; Linaje M; Rodríguez-Pérez FJ
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29570645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network.
    Lee D
    Sensors (Basel); 2008 Dec; 8(12):7690-7714. PubMed ID: 27873953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Availability and End-to-end Reliability in Low Duty Cycle Multihop Wireless Sensor Networks.
    Suhonen J; Hämäläinen TD; Hännikäinen M
    Sensors (Basel); 2009; 9(3):2088-116. PubMed ID: 22574002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Static vs. mobile sink: The influence of basic parameters on energy efficiency in wireless sensor networks.
    Khan MI; Gansterer WN; Haring G
    Comput Commun; 2013 May; 36(9):965-978. PubMed ID: 23805013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Energy-Efficient Routing Algorithm Based on Greedy Strategy for Energy Harvesting Wireless Sensor Networks.
    Hao S; Hong Y; He Y
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Miniature microbial solar cells to power wireless sensor networks.
    Liu L; Choi S
    Biosens Bioelectron; 2021 Apr; 177():112970. PubMed ID: 33429201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leveraging Energy Harvesting and Wake-Up Receivers for Long-Term Wireless Sensor Networks.
    Ait Aoudia F; Gautier M; Magno M; Berder O; Benini L
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29762535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.