These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 30071730)

  • 1. A Single Large Assembly with Dynamically Fluctuating Swarms of Gold Nanoparticles Formed by Trapping Laser.
    Kudo T; Yang SJ; Masuhara H
    Nano Lett; 2018 Sep; 18(9):5846-5853. PubMed ID: 30071730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface plasmon resonance effect on laser trapping and swarming of gold nanoparticles at an interface.
    Huang CH; Kudo T; Bresolí-Obach R; Hofkens J; Sugiyama T; Masuhara H
    Opt Express; 2020 Sep; 28(19):27727-27735. PubMed ID: 32988060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical Trapping-Formed Colloidal Assembly with Horns Extended to the Outside of a Focus through Light Propagation.
    Kudo T; Wang SF; Yuyama K; Masuhara H
    Nano Lett; 2016 May; 16(5):3058-62. PubMed ID: 27104966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The primeval optical evolving matter by optical binding inside and outside the photon beam.
    Huang CH; Louis B; Bresolí-Obach R; Kudo T; Camacho R; Scheblykin IG; Sugiyama T; Hofkens J; Masuhara H
    Nat Commun; 2022 Sep; 13(1):5325. PubMed ID: 36088393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optically Evolved Assembly Formation in Laser Trapping of Polystyrene Nanoparticles at Solution Surface.
    Wang SF; Kudo T; Yuyama KI; Sugiyama T; Masuhara H
    Langmuir; 2016 Nov; 32(47):12488-12496. PubMed ID: 27606971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large Submillimeter Assembly of Microparticles with Necklace-like Patterns Formed by Laser Trapping at Solution Surface.
    Lu JS; Wang HY; Kudo T; Masuhara H
    J Phys Chem Lett; 2020 Aug; 11(15):6057-6062. PubMed ID: 32658483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser trapping chemistry: from polymer assembly to amino acid crystallization.
    Sugiyama T; Yuyama K; Masuhara H
    Acc Chem Res; 2012 Nov; 45(11):1946-54. PubMed ID: 23094993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser trapping of colloidal metal nanoparticles.
    Lehmuskero A; Johansson P; Rubinsztein-Dunlop H; Tong L; Käll M
    ACS Nano; 2015; 9(4):3453-69. PubMed ID: 25808609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-spherical gold nanoparticles trapped in optical tweezers: shape matters.
    Brzobohatý O; Šiler M; Trojek J; Chvátal L; Karásek V; Zemánek P
    Opt Express; 2015 Apr; 23(7):8179-89. PubMed ID: 25968657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces.
    Tong L; Miljković VD; Käll M
    Nano Lett; 2010 Jan; 10(1):268-73. PubMed ID: 20030391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast spinning of gold nanoparticles in water using circularly polarized light.
    Lehmuskero A; Ogier R; Gschneidtner T; Johansson P; Käll M
    Nano Lett; 2013 Jul; 13(7):3129-34. PubMed ID: 23777484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of interfering optical fields in the trapping and melting of gold nanorods and related clusters.
    Deng HD; Li GC; Dai QF; Ouyang M; Lan S; Gopal AV; Trofimov VA; Lysak TM
    Opt Express; 2012 May; 20(10):10963-70. PubMed ID: 22565719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opto-thermophoretic separation and trapping of plasmonic nanoparticles.
    Setoura K; Tsuji T; Ito S; Kawano S; Miyasaka H
    Nanoscale; 2019 Nov; 11(44):21093-21102. PubMed ID: 31402358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional optical trapping and manipulation of single silver nanowires.
    Yan Z; Jureller JE; Sweet J; Guffey MJ; Pelton M; Scherer NF
    Nano Lett; 2012 Oct; 12(10):5155-61. PubMed ID: 22931238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocontrolled Supramolecular Assembling of Azobenzene-Based Biscalix[4]arenes upon Starting and Stopping Laser Trapping.
    Yuyama KI; Marcelis L; Su PM; Chung WS; Masuhara H
    Langmuir; 2017 Jan; 33(3):755-763. PubMed ID: 28033013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarization-Dependent Plasmonic Nano-Tweezer as a Platform for On-Chip Trapping and Manipulation of Virus-Like Particles.
    Mokri K; Mozaffari MH; Farmani A
    IEEE Trans Nanobioscience; 2022 Apr; 21(2):226-231. PubMed ID: 34665735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical Force-Induced Chemistry at Solution Surfaces.
    Masuhara H; Yuyama KI
    Annu Rev Phys Chem; 2021 Apr; 72():565-589. PubMed ID: 33567878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and Operation of a Nano-Optical Conveyor Belt.
    Ryan J; Zheng Y; Hansen P; Hesselink L
    J Vis Exp; 2015 Aug; (102):e52842. PubMed ID: 26381708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling the position and orientation of single silver nanowires on a surface using structured optical fields.
    Yan Z; Sweet J; Jureller JE; Guffey MJ; Pelton M; Scherer NF
    ACS Nano; 2012 Sep; 6(9):8144-55. PubMed ID: 22900883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.