These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3007193)

  • 41. Development of neuronal selectivity in primary visual cortex of cat.
    Frégnac Y; Imbert M
    Physiol Rev; 1984 Jan; 64(1):325-434. PubMed ID: 6320235
    [No Abstract]   [Full Text] [Related]  

  • 42. Cortical effects of monocular deprivation: suppression or deafferentation?
    Movshon JA
    Nature; 1981 May; 291(5813):284-5. PubMed ID: 7231546
    [No Abstract]   [Full Text] [Related]  

  • 43. Effects of pattern deprivation on visual cortical cells in the rabbit: a reevaluation.
    Murphy EH
    J Neurophysiol; 1985 Jun; 53(6):1535-50. PubMed ID: 4009232
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transient patterns of serotonergic innervation in the rat visual cortex: normal development and effects of neonatal enucleation.
    Nakazawa M; Koh T; Kani K; Maeda T
    Brain Res Dev Brain Res; 1992 Mar; 66(1):77-90. PubMed ID: 1600633
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Effects of binocular form deprivation on the properties of gamma-aminobutyric acid currents of rat visual cortical neurons].
    Qin W; Yin ZQ; Wang SJ; Zhao YJ
    Zhonghua Yan Ke Za Zhi; 2005 Jan; 41(1):37-40. PubMed ID: 15774112
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rapid restoration of functional input to the visual cortex of the cat after brief monocular deprivation.
    Blakemore C; Hawken MJ
    J Physiol; 1982 Jun; 327():463-87. PubMed ID: 7120147
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bilateral changes in soma size of geniculate relay cells and corticogeniculate cells after neonatal monocular enucleation in rats.
    Fukuda Y; Hsiao CF
    Brain Res; 1984 May; 301(1):13-23. PubMed ID: 6733484
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Variability in the effects of monocular deprivation on the optokinetic reflex of the non-deprived eye in the cat.
    Markner C; Hoffmann KP
    Exp Brain Res; 1985; 61(1):117-27. PubMed ID: 4085591
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Long-Term Visual Training Increases Visual Acuity and Long-Term Monocular Deprivation Promotes Ocular Dominance Plasticity in Adult Standard Cage-Raised Mice.
    Hosang L; Yusifov R; Löwel S
    eNeuro; 2018; 5(1):. PubMed ID: 29379877
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of monocular deprivation on geniculocortical synapses in the cat.
    Tieman SB
    J Comp Neurol; 1984 Jan; 222(2):166-76. PubMed ID: 6699206
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Blockade of GABAergic inhibition reveals reordered cortical somatotopic maps in rats that sustained neonatal forelimb removal.
    Lane RD; Killackey HP; Rhoades RW
    J Neurophysiol; 1997 May; 77(5):2723-35. PubMed ID: 9163388
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Glutamate decarboxylase-immunoreactive terminals of Golgi-impregnated axoaxonic cells and of presumed basket cells in synaptic contact with pyramidal neurons of the cat's visual cortex.
    Freund TF; Martin KA; Smith AD; Somogyi P
    J Comp Neurol; 1983 Dec; 221(3):263-78. PubMed ID: 6655085
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Schwann cells transplanted in the lateral ventricles prevent the functional and anatomical effects of monocular deprivation in the rat.
    Pizzorusso T; Fagiolini M; Fabris M; Ferrari G; Maffei L
    Proc Natl Acad Sci U S A; 1994 Mar; 91(7):2572-6. PubMed ID: 8146156
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Some effects of early monocular deprivation in the Mongolian gerbil.
    Wilkinson F; Baker AG; Boothroyd K
    Brain Res; 1986 May; 391(2):276-9. PubMed ID: 3697779
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The size of the zone of origin of callosal afferents projecting to the primary visual cortex contralateral to the remaining eye in rats monocularly enucleated at different postnatal ages.
    Wree A; Angenendt HW; Zilles K
    Anat Embryol (Berl); 1986; 174(1):91-6. PubMed ID: 3706777
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Visual cortex is rescued from the effects of dark rearing by overexpression of BDNF.
    Gianfranceschi L; Siciliano R; Walls J; Morales B; Kirkwood A; Huang ZJ; Tonegawa S; Maffei L
    Proc Natl Acad Sci U S A; 2003 Oct; 100(21):12486-91. PubMed ID: 14514885
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of neonatal enucleation on receptive-field properties of visual neurons in superior colliculus of the golden hamster.
    Rhoades RW; Chalupa LM
    J Neurophysiol; 1980 Mar; 43(3):595-611. PubMed ID: 7373351
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation.
    Maffei A; Nelson SB; Turrigiano GG
    Nat Neurosci; 2004 Dec; 7(12):1353-9. PubMed ID: 15543139
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transneuronal effects of early eye removal on geniculo-cortical projection cells.
    Jeffery G
    Brain Res; 1984 Apr; 315(2):257-63. PubMed ID: 6722589
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Eyes wide shut.
    Hübener M; Bonhoeffer T
    Nat Neurosci; 1999 Dec; 2(12):1043-5. PubMed ID: 10570475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.