BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30072330)

  • 1. Perception of Looming Motion in Virtual Reality Egocentric Interception Tasks.
    Rolin RA; Fooken J; Spering M; Pai DK
    IEEE Trans Vis Comput Graph; 2019 Oct; 25(10):3042-3048. PubMed ID: 30072330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of visually simulated self-motion on predicting object motion-A registered report protocol.
    Jörges B; Harris LR
    PLoS One; 2023; 18(1):e0267983. PubMed ID: 36716328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Context effects on smooth pursuit and manual interception of a disappearing target.
    Kreyenmeier P; Fooken J; Spering M
    J Neurophysiol; 2017 Jul; 118(1):404-415. PubMed ID: 28515287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensorimotor contingency modulates breakthrough of virtual 3D objects during a breaking continuous flash suppression paradigm.
    Suzuki K; Schwartzman DJ; Augusto R; Seth AK
    Cognition; 2019 Jun; 187():95-107. PubMed ID: 30852262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal integration of kinematic and ball-flight information when perceiving the speed of a moving ball.
    Nakamoto H; Fukuhara K; Torii T; Takamido R; Mann DL
    Front Sports Act Living; 2022; 4():930295. PubMed ID: 36524057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visuomotor Interactions and Perceptual Judgments in Virtual Reality Simulating Different Levels of Gravity.
    La Scaleia B; Ceccarelli F; Lacquaniti F; Zago M
    Front Bioeng Biotechnol; 2020; 8():76. PubMed ID: 32133351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-Dimensional Motion Perception: Comparing Speed and Speed Change Discrimination for Looming Stimuli.
    Lee ARI; Ales JM; Harris JM
    Vision (Basel); 2020 Jul; 4(3):. PubMed ID: 32640601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speed discrimination of motion-in-depth using binocular cues.
    Harris JM; Watamaniuk SN
    Vision Res; 1995 Apr; 35(7):885-96. PubMed ID: 7762146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Object speed derived from the integration of motion in the image plane and motion-in-depth signaled by stereomotion and looming.
    Khuu SK; Lee TC; Hayes A
    Vision Res; 2010 Apr; 50(9):904-13. PubMed ID: 20156474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impending Collision Judgment from an Egocentric Perspective in Real and Virtual Environments: A Review.
    Feldstein IT
    Perception; 2019 Sep; 48(9):769-795. PubMed ID: 31362575
    [No Abstract]   [Full Text] [Related]  

  • 11. Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment.
    Kim HK; Park J; Choi Y; Choe M
    Appl Ergon; 2018 May; 69():66-73. PubMed ID: 29477332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Weighted combination of size and disparity: a computational model for timing a ball catch.
    Rushton SK; Wann JP
    Nat Neurosci; 1999 Feb; 2(2):186-90. PubMed ID: 10195204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and application of real-time visual attention model for the exploration of 3D virtual environments.
    Hillaire S; Lécuyer A; Regia-Corte T; Cozot R; Royan J; Breton G
    IEEE Trans Vis Comput Graph; 2012 Mar; 18(3):356-68. PubMed ID: 21931178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of monocular depth cues on the detection of moving objects by moving observers.
    Royden CS; Parsons D; Travatello J
    Vision Res; 2016 Jul; 124():7-14. PubMed ID: 27264029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between cues to visual motion in depth.
    Howard IP; Fujii Y; Allison RS
    J Vis; 2014 Feb; 14(2):. PubMed ID: 24554479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual distance estimation in static compared to moving virtual scenes.
    Frenz H; Lappe M
    Span J Psychol; 2006 Nov; 9(2):321-31. PubMed ID: 17120711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Velocity constancy in a virtual reality environment.
    Distler HK; Gegenfurtner KR; van Veen HA; Hawken MJ
    Perception; 2000; 29(12):1423-35. PubMed ID: 11257966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study.
    Basso Moro S; Bisconti S; Muthalib M; Spezialetti M; Cutini S; Ferrari M; Placidi G; Quaresima V
    Neuroimage; 2014 Jan; 85 Pt 1():451-60. PubMed ID: 23684867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of cues in virtual reality depends on visual feedback.
    Fulvio JM; Rokers B
    Sci Rep; 2017 Nov; 7(1):16009. PubMed ID: 29167491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CrowbarLimbs: A Fatigue-Reducing Virtual Reality Text Entry Metaphor.
    Bakar MA; Tsai YT; Hsueh HH; Li EC
    IEEE Trans Vis Comput Graph; 2023 Feb; PP():. PubMed ID: 37027725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.