These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 30072331)

  • 21. High density electromyography data of normally limbed and transradial amputee subjects for multifunction prosthetic control.
    Daley H; Englehart K; Hargrove L; Kuruganti U
    J Electromyogr Kinesiol; 2012 Jun; 22(3):478-84. PubMed ID: 22269773
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimizing pattern recognition-based control for partial-hand prosthesis application.
    Earley EJ; Adewuyi AA; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3574-7. PubMed ID: 25570763
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design and Functional Evaluation of a Dexterous Myoelectric Hand Prosthesis With Biomimetic Tactile Sensor.
    Zhang T; Jiang L; Liu H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1391-1399. PubMed ID: 29985148
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Voluntary Control of Residual Antagonistic Muscles in Transtibial Amputees: Feedforward Ballistic Contractions and Implications for Direct Neural Control of Powered Lower Limb Prostheses.
    Huang S; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):894-903. PubMed ID: 29641394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of multiple dynamic factors on the performance of myoelectric pattern recognition.
    Khushaba RN; Al-Timemy A; Kodagoda S
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1679-82. PubMed ID: 26736599
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A synergy-driven approach to a myoelectric hand.
    Godfrey SB; Ajoudani A; Catalano M; Grioli G; Bicchi A
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650377. PubMed ID: 24187196
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving the Robustness of Myoelectric Pattern Recognition for Upper Limb Prostheses by Covariate Shift Adaptation.
    Vidovic MM; Hwang HJ; Amsuss S; Hahne JM; Farina D; Muller KR
    IEEE Trans Neural Syst Rehabil Eng; 2016 Sep; 24(9):961-970. PubMed ID: 26513794
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control.
    Adewuyi AA; Hargrove LJ; Kuiken TA
    IEEE Trans Neural Syst Rehabil Eng; 2016 Apr; 24(4):485-94. PubMed ID: 25955989
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control.
    Huang S; Wensman JP; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):573-81. PubMed ID: 26057851
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gaussian Process Autoregression for Simultaneous Proportional Multi-Modal Prosthetic Control With Natural Hand Kinematics.
    Xiloyannis M; Gavriel C; Thomik AAC; Faisal AA
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1785-1801. PubMed ID: 28880183
    [TBL] [Abstract][Full Text] [Related]  

  • 31. EMG pattern recognition control of multifunctional prostheses by transradial amputees.
    Li G; Kuiken TA
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6914-7. PubMed ID: 19964455
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control?
    Ninu A; Dosen S; Muceli S; Rattay F; Dietl H; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):1041-52. PubMed ID: 24801625
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of time on EMG classification of hand motions in able-bodied and transradial amputees.
    Waris A; Niazi IK; Jamil M; Gilani O; Englehart K; Jensen W; Shafique M; Kamavuako EN
    J Electromyogr Kinesiol; 2018 Jun; 40():72-80. PubMed ID: 29689443
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and validation of a morphing myoelectric hand posture controller based on principal component analysis of human grasping.
    Segil JL; Weir RF
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):249-57. PubMed ID: 23649286
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Real-time myoelectric control of a multi-fingered hand prosthesis using principal components analysis.
    Matrone GC; Cipriani C; Carrozza MC; Magenes G
    J Neuroeng Rehabil; 2012 Jun; 9():40. PubMed ID: 22703711
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users.
    Witteveen HJ; Rietman HS; Veltink PH
    Prosthet Orthot Int; 2015 Jun; 39(3):204-12. PubMed ID: 24567348
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intuitive real-time control strategy for high-density myoelectric hand prosthesis using deep and transfer learning.
    Tam S; Boukadoum M; Campeau-Lecours A; Gosselin B
    Sci Rep; 2021 May; 11(1):11275. PubMed ID: 34050220
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrotactile EMG feedback improves the control of prosthesis grasping force.
    Schweisfurth MA; Markovic M; Dosen S; Teich F; Graimann B; Farina D
    J Neural Eng; 2016 Oct; 13(5):056010. PubMed ID: 27547992
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving Myoelectric Control for Amputees through Transcranial Direct Current Stimulation.
    Pan L; Zhang D; Sheng X; Zhu X
    IEEE Trans Biomed Eng; 2015 Aug; 62(8):1927-36. PubMed ID: 25730820
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Classification complexity in myoelectric pattern recognition.
    Nilsson N; Håkansson B; Ortiz-Catalan M
    J Neuroeng Rehabil; 2017 Jul; 14(1):68. PubMed ID: 28693533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.