These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 30072386)

  • 1. Limping following limb loss increases locomotor stability.
    Wilshin S; Shamble PS; Hovey KJ; Harris R; Spence AJ; Hsieh ST
    J Exp Biol; 2018 Sep; 221(Pt 18):. PubMed ID: 30072386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid recovery of locomotor performance after leg loss in harvestmen.
    Escalante I; Badger MA; Elias DO
    Sci Rep; 2020 Aug; 10(1):13747. PubMed ID: 32792648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Longitudinal quasi-static stability predicts changes in dog gait on rough terrain.
    Wilshin S; Reeve MA; Haynes GC; Revzen S; Koditschek DE; Spence AJ
    J Exp Biol; 2017 May; 220(Pt 10):1864-1874. PubMed ID: 28264903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autotomy-induced effects on the locomotor performance of the ghost crab Ocypode quadrata.
    Pfeiffenberger JA; Hsieh ST
    J Exp Biol; 2021 May; 224(10):. PubMed ID: 33785503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactive effects of leg autotomy and incline on locomotor performance and kinematics of the cellar spider,
    Gerald GW; Thompson MM; Levine TD; Wrinn KM
    Ecol Evol; 2017 Sep; 7(17):6729-6735. PubMed ID: 28904754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locomotor mechanism of
    Hao X; Ma W; Liu C; Qian Z; Ren L; Ren L
    Biol Open; 2020 Dec; 9(12):. PubMed ID: 33148608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanics of omnidirectional strikes in flat spiders.
    Zeng Y; Crews S
    J Exp Biol; 2018 Apr; 221(Pt 7):. PubMed ID: 29440135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association between stride time fractality and gait adaptability during unperturbed and asymmetric walking.
    Ducharme SW; Liddy JJ; Haddad JM; Busa MA; Claxton LJ; van Emmerik REA
    Hum Mov Sci; 2018 Apr; 58():248-259. PubMed ID: 29505917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Central control of interlimb coordination and speed-dependent gait expression in quadrupeds.
    Danner SM; Wilshin SD; Shevtsova NA; Rybak IA
    J Physiol; 2016 Dec; 594(23):6947-6967. PubMed ID: 27633893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenotypic characterization of speed-associated gait changes in mice reveals modular organization of locomotor networks.
    Bellardita C; Kiehn O
    Curr Biol; 2015 Jun; 25(11):1426-36. PubMed ID: 25959968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanics of octopedal locomotion: kinematic and kinetic analysis of the spider Grammostola mollicoma.
    Biancardi CM; Fabrica CG; Polero P; Loss JF; Minetti AE
    J Exp Biol; 2011 Oct; 214(Pt 20):3433-42. PubMed ID: 21957107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait parameter adjustments of cotton-top tamarins (Saguinus oedipus, Callitrichidae) to locomotion on inclined arboreal substrates.
    Nyakatura JA; Fischer MS; Schmidt M
    Am J Phys Anthropol; 2008 Jan; 135(1):13-26. PubMed ID: 17786994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speed control in quadrupedal locomotion: principles of limb coordination in the dog.
    Błaszczyk JW; Dobrzecka C
    Acta Neurobiol Exp (Wars); 1989; 49(2-3):105-24. PubMed ID: 2728931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait as solution, but what is the problem? Exploring cost, economy and compromise in locomotion.
    Bertram JE
    Vet J; 2013 Dec; 198 Suppl 1():e3-8. PubMed ID: 24149060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angular momentum and arboreal stability in common marmosets (Callithrix jacchus).
    Chadwell BA; Young JW
    Am J Phys Anthropol; 2015 Apr; 156(4):565-76. PubMed ID: 25523444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leg loss decreases endurance and increases oxygen consumption during locomotion in harvestmen.
    Escalante I; Ellis VR; Elias DO
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2021 Mar; 207(2):257-268. PubMed ID: 33236163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Substrate Size and Orientation on Quadrupedal Gait Kinematics in Mouse Lemurs (Microcebus murinus).
    Shapiro LJ; Kemp AD; Young JW
    J Exp Zool A Ecol Genet Physiol; 2016 Jun; 325(5):329-43. PubMed ID: 27222465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steady locomotion in dogs: temporal and associated spatial coordination patterns and the effect of speed.
    Maes LD; Herbin M; Hackert R; Bels VL; Abourachid A
    J Exp Biol; 2008 Jan; 211(Pt 1):138-49. PubMed ID: 18083742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crawling at High Speeds: Steady Level Locomotion in the Spider Cupiennius salei-Global Kinematics and Implications for Centre of Mass Dynamics.
    Weihmann T
    PLoS One; 2013; 8(6):e65788. PubMed ID: 23805189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Symmetrical and asymmetrical gaits in the mouse: patterns to increase velocity.
    Herbin M; Gasc JP; Renous S
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Nov; 190(11):895-906. PubMed ID: 15449091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.