These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 30072614)

  • 1. Changes in the Geographic Distribution of the Diana Fritillary (
    Wells CN; Tonkyn D
    Insects; 2018 Aug; 9(3):. PubMed ID: 30072614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental Variables Influencing Five Speyeria (Lepidoptera: Nymphalidae) Species' Potential Distributions of Suitable Habitat in the Eastern United States.
    Geest EA; Baum KA
    Environ Entomol; 2021 Jun; 50(3):633-648. PubMed ID: 33561201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the distributional range shifts of Rhizocarpon geographicum (L.) DC. in Indian Himalayan Region under future climate scenarios.
    Kumar D; Pandey A; Rawat S; Joshi M; Bajpai R; Upreti DK; Singh SP
    Environ Sci Pollut Res Int; 2022 Sep; 29(41):61579-61593. PubMed ID: 34351582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction in the potential distribution of bumble bees (Apidae: Bombus) in Mesoamerica under different climate change scenarios: Conservation implications.
    Martínez-López O; Koch JB; Martínez-Morales MA; Navarrete-Gutiérrez D; Enríquez E; Vandame R
    Glob Chang Biol; 2021 May; 27(9):1772-1787. PubMed ID: 33595918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting habitat suitability and niche dynamics of Dactylorhiza hatagirea and Rheum webbianum in the Himalaya under projected climate change.
    Wani IA; Khan S; Verma S; Al-Misned FA; Shafik HM; El-Serehy HA
    Sci Rep; 2022 Aug; 12(1):13205. PubMed ID: 35915126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forecasting distributions of an aquatic invasive species (Nitellopsis obtusa) under future climate scenarios.
    Romero-Alvarez D; Escobar LE; Varela S; Larkin DJ; Phelps NBD
    PLoS One; 2017; 12(7):e0180930. PubMed ID: 28704433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of climate change on vector transmission of Trypanosoma cruzi (Chagas, 1909) in North America.
    Carmona-Castro O; Moo-Llanes DA; Ramsey JM
    Med Vet Entomol; 2018 Mar; 32(1):84-101. PubMed ID: 28887895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate change risks, extinction debt, and conservation implications for a threatened freshwater fish: Carmine shiner (Notropis percobromus).
    Pandit SN; Maitland BM; Pandit LK; Poesch MS; Enders EC
    Sci Total Environ; 2017 Nov; 598():1-11. PubMed ID: 28433817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Niche modeling for the genus
    Rej JE; Joyner TA
    PeerJ; 2018; 6():e6128. PubMed ID: 30588407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution patterns of
    Suicmez B; Avci M
    Ecol Evol; 2023 Oct; 13(10):e10606. PubMed ID: 37869430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dispersal and extrapolation on the accuracy of temporal predictions from distribution models for the Darwin's frog.
    Uribe-Rivera DE; Soto-Azat C; Valenzuela-Sánchez A; Bizama G; Simonetti JA; Pliscoff P
    Ecol Appl; 2017 Jul; 27(5):1633-1645. PubMed ID: 28397328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of
    Kumari P; Wani IA; Khan S; Verma S; Mushtaq S; Gulnaz A; Paray BA
    Biology (Basel); 2022 Mar; 11(4):. PubMed ID: 35453699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contradictory effect of climate change on American and European populations of Impatiens capensis Meerb. - is this herb a global threat?
    Rewicz A; Myśliwy M; Rewicz T; Adamowski W; Kolanowska M
    Sci Total Environ; 2022 Dec; 850():157959. PubMed ID: 35964758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impacts of climate change on the geographic distribution of African oak tree (
    Balima LH; Nacoulma BMI; Da SS; Ouédraogo A; Soro D; Thiombiano A
    Heliyon; 2022 Jan; 8(1):e08688. PubMed ID: 35028465
    [No Abstract]   [Full Text] [Related]  

  • 15. [Responses of potential suitable area of Paris verticillata to climate change and its dominant climate factors].
    Ji LT; Zheng TY; Chen Q; Zhong JJ; Kang B
    Ying Yong Sheng Tai Xue Bao; 2020 Jan; 31(1):89-96. PubMed ID: 31957384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Potential geographical distribution of Pyrus calleryana under different climate change scena-rios based on the MaxEnt model].
    Liu C; Huo HL; Tian LM; Dong XG; Qi D; Zhang Y; Xu JY; Cao YF
    Ying Yong Sheng Tai Xue Bao; 2018 Nov; 29(11):3696-3704. PubMed ID: 30460817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the potential global distribution of
    Changjun G; Yanli T; Linshan L; Bo W; Yili Z; Haibin Y; Xilong W; Zhuoga Y; Binghua Z; Bohao C
    Ecol Evol; 2021 Sep; 11(17):12092-12113. PubMed ID: 34522363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speyeria (Lepidoptera: Nymphalidae) Conservation.
    Sims SR
    Insects; 2017 Apr; 8(2):. PubMed ID: 28441319
    [No Abstract]   [Full Text] [Related]  

  • 19. Biogeographic consequences of shifting climate for the western massasauga (
    Walkup DK; Lawing AM; Hibbitts TJ; Ryberg WA
    Ecol Evol; 2022 Feb; 12(2):e8599. PubMed ID: 35169456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Projecting the future of an alpine ungulate under climate change scenarios.
    White KS; Gregovich DP; Levi T
    Glob Chang Biol; 2018 Mar; 24(3):1136-1149. PubMed ID: 28973826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.