These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 30072637)

  • 1. Self-Sensing Nonlinear Ultrasonic Fatigue Crack Detection under Temperature Variation
    Kim N; Jang K; An YK
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30072637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Damage detection of fatigue cracks under nonlinear boundary condition using subharmonic resonance.
    Zhang M; Xiao L; Qu W; Lu Y
    Ultrasonics; 2017 May; 77():152-159. PubMed ID: 28237824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Necessary Conditions for Nonlinear Ultrasonic Modulation Generation Given a Localized Fatigue Crack in a Plate-Like Structure.
    Lim HJ; Sohn H
    Materials (Basel); 2017 Feb; 10(3):. PubMed ID: 28772608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stripe-PZT Sensor-Based Baseline-Free Crack Diagnosis in a Structure with a Welded Stiffener.
    An YK; Shen Z; Wu Z
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27649200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive detection and localization of fatigue cracking in aluminum plates using Green's function reconstruction from ambient noise.
    Yang Y; Xiao L; Qu W; Lu Y
    Ultrasonics; 2017 Nov; 81():187-195. PubMed ID: 28711637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling nonlinearities of ultrasonic waves for fatigue damage characterization: theory, simulation, and experimental validation.
    Hong M; Su Z; Wang Q; Cheng L; Qing X
    Ultrasonics; 2014 Mar; 54(3):770-8. PubMed ID: 24156928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ordinary state-based peri-ultrasound modeling to study the effects of multiple cracks on the nonlinear response of plate structures.
    Zhang G; Li X; Kundu T
    Ultrasonics; 2023 Aug; 133():107028. PubMed ID: 37178484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring fatigue cracks in riveted plates using a sideband intensity based nonlinear ultrasonic technique.
    Hu B; Amjad U; Kundu T
    Ultrasonics; 2024 Jul; 141():107335. PubMed ID: 38692212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of nonlinear interactions between guided waves and fatigue cracks using local interaction simulation approach.
    Shen Y; Cesnik CE
    Ultrasonics; 2017 Feb; 74():106-123. PubMed ID: 27770666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wavefield imaging of nonlinear ultrasonic Lamb waves for visualizing fatigue micro-cracks.
    Xu H; Liu L; Li X; Xiang Y; Xuan FZ
    Ultrasonics; 2024 Mar; 138():107214. PubMed ID: 38056320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical insight into "breathing" crack-induced acoustic nonlinearity with an application to quantitative evaluation of contact cracks.
    Wang K; Liu M; Su Z; Yuan S; Fan Z
    Ultrasonics; 2018 Aug; 88():157-167. PubMed ID: 29660569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of Micro-Cracks in Metals Using Modulation of PZT-Induced Lamb Waves.
    Lee SE; Hong JW
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32872483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crack Detection of Threaded Steel Rods Based on Ultrasonic Guided Waves.
    Peng K; Zhang Y; Xu X; Han J; Luo Y
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue-Crack Detection and Monitoring through the Scattered-Wave Two-Dimensional Cross-Correlation Imaging Method Using Piezoelectric Transducers.
    Xiao W; Yu L; Joseph R; Giurgiutiu V
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32471102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatigue crack localization using noncontact laser ultrasonics and state space attractors.
    Liu P; Sohn H; Yang S; Kundu T
    J Acoust Soc Am; 2015 Aug; 138(2):890-8. PubMed ID: 26328704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of steel fatigue cracks with strain sensing sheets based on large area electronics.
    Yao Y; Glisic B
    Sensors (Basel); 2015 Apr; 15(4):8088-108. PubMed ID: 25853407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear ultrasonic phased array with fixed-voltage fundamental wave amplitude difference for high-selectivity imaging of closed cracks.
    Ohara Y; Nakajima H; Haupert S; Tsuji T; Mihara T
    J Acoust Soc Am; 2019 Jul; 146(1):266. PubMed ID: 31370588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peri-ultrasound for modeling linear and nonlinear ultrasonic response.
    Hafezi MH; Alebrahim R; Kundu T
    Ultrasonics; 2017 Sep; 80():47-57. PubMed ID: 28499124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ultrasonic method for dynamic monitoring of fatigue crack initiation and growth.
    Mi B; Michaels JE; Michaels TE
    J Acoust Soc Am; 2006 Jan; 119(1):74-85. PubMed ID: 16454266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applying a nonlinear, pitch-catch, ultrasonic technique for the detection of kissing bonds in friction stir welds.
    Delrue S; Tabatabaeipour M; Hettler J; Van Den Abeele K
    Ultrasonics; 2016 May; 68():71-9. PubMed ID: 26921559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.