BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30073068)

  • 1. Best hyperspectral indices for assessing leaf chlorophyll content in a degraded temperate vegetation.
    Peng Y; Fan M; Wang Q; Lan W; Long Y
    Ecol Evol; 2018 Jul; 8(14):7068-7078. PubMed ID: 30073068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of leaf nutrition status in degraded vegetation based on field survey and hyperspectral data.
    Peng Y; Zhang M; Xu Z; Yang T; Su Y; Zhou T; Wang H; Wang Y; Lin Y
    Sci Rep; 2020 Mar; 10(1):4361. PubMed ID: 32152356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies.
    Kong W; Huang W; Casa R; Zhou X; Ye H; Dong Y
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29168757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of Hyperspectral Reflectance Sensing for Assessing Growth and Chlorophyll Content of Spring Wheat Grown under Simulated Saline Field Conditions.
    El-Hendawy S; Elsayed S; Al-Suhaibani N; Alotaibi M; Tahir MU; Mubushar M; Attia A; Hassan WM
    Plants (Basel); 2021 Jan; 10(1):. PubMed ID: 33418974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of Corn Canopy Chlorophyll Content Using Derivative Spectra in the O
    Zhang X; He Y; Wang C; Xu F; Li X; Tan C; Chen D; Wang G; Shi L
    Front Plant Sci; 2019; 10():1047. PubMed ID: 31507626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reflectance variation within the in-chlorophyll centre waveband for robust retrieval of leaf chlorophyll content.
    Zhang J; Huang W; Zhou Q
    PLoS One; 2014; 9(11):e110812. PubMed ID: 25365207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Dual NDVI Ratio Vegetation Index: A Kind of Vegetation Index Assessing Leaf Carotenoid Content Based on Leaf Optical Properties Model].
    Wang H; Shi R; Liu PD; Gao W
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jul; 36(7):2189-94. PubMed ID: 30035980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperspectral estimation of chlorophyll content in jujube leaves: integration of derivative processing techniques and dimensionality reduction algorithms.
    Tuerxun N; Zheng J; Wang R; Wang L; Liu L
    Front Plant Sci; 2023; 14():1260772. PubMed ID: 38034562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion.
    Zhang H; Ge Y; Xie X; Atefi A; Wijewardane NK; Thapa S
    Plant Methods; 2022 May; 18(1):60. PubMed ID: 35505350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating sensitivity of hyperspectral indices for estimating mangrove chlorophyll in Middle Andaman Island, India.
    George R; Padalia H; Sinha SK; Kumar AS
    Environ Monit Assess; 2020 Jan; 191(Suppl 3):785. PubMed ID: 31989307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ground-Based Hyperspectral Remote Sensing for Estimating Water Stress in Tomato Growth in Sandy Loam and Silty Loam Soils.
    Alordzinu KE; Li J; Lan Y; Appiah SA; Al Aasmi A; Wang H; Liao J; Sam-Amoah LK; Qiao S
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a hyperspectral imaging system to quantify leaf-scale chlorophyll, nitrogen and chlorophyll fluorescence parameters in grapevine.
    Yang Z; Tian J; Feng K; Gong X; Liu J
    Plant Physiol Biochem; 2021 Sep; 166():723-737. PubMed ID: 34214782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Migrating from Invasive to Noninvasive Techniques for Enhanced Leaf Chlorophyll Content Estimations Efficiency.
    Kandpal KC; Kumar A
    Crit Rev Anal Chem; 2023 Mar; ():1-16. PubMed ID: 36995248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Throughput Analysis of Leaf Chlorophyll Content in Aquaponically Grown Lettuce Using Hyperspectral Reflectance and RGB Images.
    Taha MF; Mao H; Wang Y; ElManawy AI; Elmasry G; Wu L; Memon MS; Niu Z; Huang T; Qiu Z
    Plants (Basel); 2024 Jan; 13(3):. PubMed ID: 38337925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning Strategies for the Retrieval of Leaf-Chlorophyll Dynamics: Model Choice, Sequential Versus Retraining Learning, and Hyperspectral Predictors.
    Angel Y; McCabe MF
    Front Plant Sci; 2022; 13():722442. PubMed ID: 35360313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of hyperspectral indices for chlorophyll-a concentration estimation in Tangxun Lake (Wuhan, China).
    Huang Y; Jiang D; Zhuang D; Fu J
    Int J Environ Res Public Health; 2010 Jun; 7(6):2437-51. PubMed ID: 20644681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring of Chlorophyll Content of Potato in Northern Shaanxi Based on Different Spectral Parameters.
    Shi H; Lu X; Sun T; Liu X; Huang X; Tang Z; Li Z; Xiang Y; Zhang F; Zhen J
    Plants (Basel); 2024 May; 13(10):. PubMed ID: 38794385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery.
    Zarco-Tejada PJ; Miller JR; Mohammed GH; Noland TL; Sampson PH
    J Environ Qual; 2002; 31(5):1433-41. PubMed ID: 12371159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperspectral leaf reflectance of Carpinus betulus L. saplings for urban air quality estimation.
    Brackx M; Van Wittenberghe S; Verhelst J; Scheunders P; Samson R
    Environ Pollut; 2017 Jan; 220(Pt A):159-167. PubMed ID: 27720547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chlorophyll content estimation in an open-canopy conifer forest with Sentinel-2A and hyperspectral imagery in the context of forest decline.
    Zarco-Tejada PJ; Hornero A; Beck PSA; Kattenborn T; Kempeneers P; Hernández-Clemente R
    Remote Sens Environ; 2019 Mar; 223():320-335. PubMed ID: 31007289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.