BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 30073200)

  • 1. Key Brain Network Nodes Show Differential Cognitive Relevance and Developmental Trajectories during Childhood and Adolescence.
    Kolskår KK; Alnæs D; Kaufmann T; Richard G; Sanders AM; Ulrichsen KM; Moberget T; Andreassen OA; Nordvik JE; Westlye LT
    eNeuro; 2018; 5(4):. PubMed ID: 30073200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional connectivity of intrinsic cognitive networks during resting state and task performance in preadolescent children.
    Jiang P; Vuontela V; Tokariev M; Lin H; Aronen ET; Ma Y; Carlson S
    PLoS One; 2018; 13(10):e0205690. PubMed ID: 30332489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contextual and Developmental Differences in the Neural Architecture of Cognitive Control.
    Petrican R; Grady CL
    J Neurosci; 2017 Aug; 37(32):7711-7726. PubMed ID: 28716967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain network segregation and integration during an epoch-related working memory fMRI experiment.
    Fransson P; Schiffler BC; Thompson WH
    Neuroimage; 2018 Sep; 178():147-161. PubMed ID: 29777824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental Maturation of the Precuneus as a Functional Core of the Default Mode Network.
    Li R; Utevsky AV; Huettel SA; Braams BR; Peters S; Crone EA; van Duijvenvoorde ACK
    J Cogn Neurosci; 2019 Oct; 31(10):1506-1519. PubMed ID: 31112473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association Between Childhood Anhedonia and Alterations in Large-scale Resting-State Networks and Task-Evoked Activation.
    Pornpattananangkul N; Leibenluft E; Pine DS; Stringaris A
    JAMA Psychiatry; 2019 Jun; 76(6):624-633. PubMed ID: 30865236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition.
    Cohen JR; D'Esposito M
    J Neurosci; 2016 Nov; 36(48):12083-12094. PubMed ID: 27903719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The neural architecture of executive functions is established by middle childhood.
    Engelhardt LE; Harden KP; Tucker-Drob EM; Church JA
    Neuroimage; 2019 Jan; 185():479-489. PubMed ID: 30312810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Contribution of Network Organization and Integration to the Development of Cognitive Control.
    Marek S; Hwang K; Foran W; Hallquist MN; Luna B
    PLoS Biol; 2015 Dec; 13(12):e1002328. PubMed ID: 26713863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is functional integration of resting state brain networks an unspecific biomarker for working memory performance?
    Alavash M; Doebler P; Holling H; Thiel CM; Gießing C
    Neuroimage; 2015 Mar; 108():182-93. PubMed ID: 25536495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cross-sectional interplay between neurochemical profile and brain connectivity.
    Zacharopoulos G; Emir U; Cohen Kadosh R
    Hum Brain Mapp; 2021 Jun; 42(9):2722-2733. PubMed ID: 33835605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Earlier onset of menstruation is related to increased body mass index in adulthood and altered functional correlations between visual, task control and somatosensory brain networks.
    Shearrer GE; Sadler JR; Papantoni A; Burger KS
    J Neuroendocrinol; 2020 Dec; 32(12):e12891. PubMed ID: 32939874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do intrinsic brain functional networks predict working memory from childhood to adulthood?
    Zhang H; Hao S; Lee A; Eickhoff SB; Pecheva D; Cai S; Meaney M; Chong YS; Broekman BFP; Fortier MV; Qiu A
    Hum Brain Mapp; 2020 Nov; 41(16):4574-4586. PubMed ID: 33463860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreased centrality of subcortical regions during the transition to adolescence: a functional connectivity study.
    Sato JR; Salum GA; Gadelha A; Vieira G; Zugman A; Picon FA; Pan PM; Hoexter MQ; Anés M; Moura LM; Del'Aquilla MA; Crossley N; Amaro Junior E; Mcguire P; Lacerda AL; Rohde LA; Miguel EC; Jackowski AP; Bressan RA
    Neuroimage; 2015 Jan; 104():44-51. PubMed ID: 25290886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Task- and stimulus-related cortical networks in language production: Exploring similarity of MEG- and fMRI-derived functional connectivity.
    Liljeström M; Stevenson C; Kujala J; Salmelin R
    Neuroimage; 2015 Oct; 120():75-87. PubMed ID: 26169324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationships between intrinsic functional connectivity, cognitive control, and reading achievement across development.
    Jolles DD; Mennigen E; Gupta MW; Hegarty CE; Bearden CE; Karlsgodt KH
    Neuroimage; 2020 Nov; 221():117202. PubMed ID: 32730958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frontoparietal and Cingulo-opercular Networks Play Dissociable Roles in Control of Working Memory.
    Wallis G; Stokes M; Cousijn H; Woolrich M; Nobre AC
    J Cogn Neurosci; 2015 Oct; 27(10):2019-34. PubMed ID: 26042457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age differences in functional network reconfiguration with working memory training.
    Iordan AD; Moored KD; Katz B; Cooke KA; Buschkuehl M; Jaeggi SM; Polk TA; Peltier SJ; Jonides J; Reuter-Lorenz PA
    Hum Brain Mapp; 2021 Apr; 42(6):1888-1909. PubMed ID: 33534925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network centrality in the human functional connectome.
    Zuo XN; Ehmke R; Mennes M; Imperati D; Castellanos FX; Sporns O; Milham MP
    Cereb Cortex; 2012 Aug; 22(8):1862-75. PubMed ID: 21968567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protracted development of executive and mnemonic brain systems underlying working memory in adolescence: A longitudinal fMRI study.
    Simmonds DJ; Hallquist MN; Luna B
    Neuroimage; 2017 Aug; 157():695-704. PubMed ID: 28456583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.