These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
392 related articles for article (PubMed ID: 30073200)
1. Key Brain Network Nodes Show Differential Cognitive Relevance and Developmental Trajectories during Childhood and Adolescence. Kolskår KK; Alnæs D; Kaufmann T; Richard G; Sanders AM; Ulrichsen KM; Moberget T; Andreassen OA; Nordvik JE; Westlye LT eNeuro; 2018; 5(4):. PubMed ID: 30073200 [TBL] [Abstract][Full Text] [Related]
2. Functional connectivity of intrinsic cognitive networks during resting state and task performance in preadolescent children. Jiang P; Vuontela V; Tokariev M; Lin H; Aronen ET; Ma Y; Carlson S PLoS One; 2018; 13(10):e0205690. PubMed ID: 30332489 [TBL] [Abstract][Full Text] [Related]
3. Brain network segregation and integration during an epoch-related working memory fMRI experiment. Fransson P; Schiffler BC; Thompson WH Neuroimage; 2018 Sep; 178():147-161. PubMed ID: 29777824 [TBL] [Abstract][Full Text] [Related]
4. Developmental Maturation of the Precuneus as a Functional Core of the Default Mode Network. Li R; Utevsky AV; Huettel SA; Braams BR; Peters S; Crone EA; van Duijvenvoorde ACK J Cogn Neurosci; 2019 Oct; 31(10):1506-1519. PubMed ID: 31112473 [TBL] [Abstract][Full Text] [Related]
5. Association Between Childhood Anhedonia and Alterations in Large-scale Resting-State Networks and Task-Evoked Activation. Pornpattananangkul N; Leibenluft E; Pine DS; Stringaris A JAMA Psychiatry; 2019 Jun; 76(6):624-633. PubMed ID: 30865236 [TBL] [Abstract][Full Text] [Related]
6. The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition. Cohen JR; D'Esposito M J Neurosci; 2016 Nov; 36(48):12083-12094. PubMed ID: 27903719 [TBL] [Abstract][Full Text] [Related]
7. Evolving brain network dynamics in early childhood: Insights from modular graph metrics. Song Z; Jiang Z; Zhang Z; Wang Y; Chen Y; Tang X; Li H Neuroimage; 2024 Aug; 297():120740. PubMed ID: 39047590 [TBL] [Abstract][Full Text] [Related]
8. Contextual and Developmental Differences in the Neural Architecture of Cognitive Control. Petrican R; Grady CL J Neurosci; 2017 Aug; 37(32):7711-7726. PubMed ID: 28716967 [TBL] [Abstract][Full Text] [Related]
9. The neural architecture of executive functions is established by middle childhood. Engelhardt LE; Harden KP; Tucker-Drob EM; Church JA Neuroimage; 2019 Jan; 185():479-489. PubMed ID: 30312810 [TBL] [Abstract][Full Text] [Related]
10. The Contribution of Network Organization and Integration to the Development of Cognitive Control. Marek S; Hwang K; Foran W; Hallquist MN; Luna B PLoS Biol; 2015 Dec; 13(12):e1002328. PubMed ID: 26713863 [TBL] [Abstract][Full Text] [Related]
11. Is functional integration of resting state brain networks an unspecific biomarker for working memory performance? Alavash M; Doebler P; Holling H; Thiel CM; Gießing C Neuroimage; 2015 Mar; 108():182-93. PubMed ID: 25536495 [TBL] [Abstract][Full Text] [Related]
12. The cross-sectional interplay between neurochemical profile and brain connectivity. Zacharopoulos G; Emir U; Cohen Kadosh R Hum Brain Mapp; 2021 Jun; 42(9):2722-2733. PubMed ID: 33835605 [TBL] [Abstract][Full Text] [Related]
13. Do intrinsic brain functional networks predict working memory from childhood to adulthood? Zhang H; Hao S; Lee A; Eickhoff SB; Pecheva D; Cai S; Meaney M; Chong YS; Broekman BFP; Fortier MV; Qiu A Hum Brain Mapp; 2020 Nov; 41(16):4574-4586. PubMed ID: 33463860 [TBL] [Abstract][Full Text] [Related]
14. Earlier onset of menstruation is related to increased body mass index in adulthood and altered functional correlations between visual, task control and somatosensory brain networks. Shearrer GE; Sadler JR; Papantoni A; Burger KS J Neuroendocrinol; 2020 Dec; 32(12):e12891. PubMed ID: 32939874 [TBL] [Abstract][Full Text] [Related]
15. Decreased centrality of subcortical regions during the transition to adolescence: a functional connectivity study. Sato JR; Salum GA; Gadelha A; Vieira G; Zugman A; Picon FA; Pan PM; Hoexter MQ; Anés M; Moura LM; Del'Aquilla MA; Crossley N; Amaro Junior E; Mcguire P; Lacerda AL; Rohde LA; Miguel EC; Jackowski AP; Bressan RA Neuroimage; 2015 Jan; 104():44-51. PubMed ID: 25290886 [TBL] [Abstract][Full Text] [Related]
16. Task- and stimulus-related cortical networks in language production: Exploring similarity of MEG- and fMRI-derived functional connectivity. Liljeström M; Stevenson C; Kujala J; Salmelin R Neuroimage; 2015 Oct; 120():75-87. PubMed ID: 26169324 [TBL] [Abstract][Full Text] [Related]
18. Frontoparietal and Cingulo-opercular Networks Play Dissociable Roles in Control of Working Memory. Wallis G; Stokes M; Cousijn H; Woolrich M; Nobre AC J Cogn Neurosci; 2015 Oct; 27(10):2019-34. PubMed ID: 26042457 [TBL] [Abstract][Full Text] [Related]
19. Age differences in functional network reconfiguration with working memory training. Iordan AD; Moored KD; Katz B; Cooke KA; Buschkuehl M; Jaeggi SM; Polk TA; Peltier SJ; Jonides J; Reuter-Lorenz PA Hum Brain Mapp; 2021 Apr; 42(6):1888-1909. PubMed ID: 33534925 [TBL] [Abstract][Full Text] [Related]
20. Network centrality in the human functional connectome. Zuo XN; Ehmke R; Mennes M; Imperati D; Castellanos FX; Sporns O; Milham MP Cereb Cortex; 2012 Aug; 22(8):1862-75. PubMed ID: 21968567 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]