BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30073222)

  • 1. Visible-light photocatalyzed oxidative decarboxylation of oxamic acids: a green route to urethanes and ureas.
    Pawar GG; Robert F; Grau E; Cramail H; Landais Y
    Chem Commun (Camb); 2018 Aug; 54(67):9337-9340. PubMed ID: 30073222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Urethanes synthesis from oxamic acids under electrochemical conditions.
    Ogbu IM; Lusseau J; Kurtay G; Robert F; Landais Y
    Chem Commun (Camb); 2020 Oct; 56(81):12226-12229. PubMed ID: 32926019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photocatalyzed decarboxylation of oxamic acids under near-infrared conditions.
    Ogbu IM; Bassani DM; Robert F; Landais Y
    Chem Commun (Camb); 2022 Aug; 58(63):8802-8805. PubMed ID: 35838178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PIDA-mediated Oxidative Decarboxylation of Oxamic Acids. The Role of Radical Acidity Enhancement.
    Ogbu IM; Kurtay G; Badufle M; Robert F; Lopez CS; Landais Y
    Chemistry; 2023 Mar; 29(15):e202202963. PubMed ID: 36583591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxamic acids: useful precursors of carbamoyl radicals.
    Ogbu IM; Kurtay G; Robert F; Landais Y
    Chem Commun (Camb); 2022 Jul; 58(55):7593-7607. PubMed ID: 35735051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visible-light mediated carbamoyl radical addition to heteroarenes.
    Jatoi AH; Pawar GG; Robert F; Landais Y
    Chem Commun (Camb); 2019 Jan; 55(4):466-469. PubMed ID: 30547162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-Free-Visible Light C-H Alkylation of Heteroaromatics via Hypervalent Iodine-Promoted Decarboxylation.
    Genovino J; Lian Y; Zhang Y; Hope TO; Juneau A; Gagné Y; Ingle G; Frenette M
    Org Lett; 2018 Jun; 20(11):3229-3232. PubMed ID: 29767991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visible light-promoted transition metal-free direct C3-carbamoylation of 2
    Ma C; Shang L; Zhao H; He X; Lv Q; Zhang D; Jiang Y
    Front Chem; 2022; 10():1087834. PubMed ID: 36523748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of 2-Quinolinones via a Hypervalent Iodine(III)-Mediated Intramolecular Decarboxylative Heck-Type Reaction at Room Temperature.
    Fan H; Pan P; Zhang Y; Wang W
    Org Lett; 2018 Dec; 20(24):7929-7932. PubMed ID: 30517007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbamoyl Radicals via Photoredox Decarboxylation of Oxamic Acids in Aqueous Media: Access to 3,4-Dihydroquinolin-2(1 H)-ones.
    Bai QF; Jin C; He JY; Feng G
    Org Lett; 2018 Apr; 20(8):2172-2175. PubMed ID: 29616821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct cyanation of heteroaromatic compounds mediated by hypervalent iodine(III) reagents: In situ generation of PhI(III)-CN species and their cyano transfer.
    Dohi T; Morimoto K; Takenaga N; Goto A; Maruyama A; Kiyono Y; Tohma H; Kita Y
    J Org Chem; 2007 Jan; 72(1):109-16. PubMed ID: 17194088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atom-Transfer Radical Addition to Unactivated Alkenes by using Heterogeneous Visible-Light Photocatalysis.
    Mao LL; Cong H
    ChemSusChem; 2017 Nov; 10(22):4461-4464. PubMed ID: 28887830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible-Light-Induced Metal- and Photocatalyst-Free Radical Cascade Cyclization of Cinnamamides for Synthesis of Functionalized Dihydroquinolinones.
    Nishad CS; Suman P; Saha H; Banerjee B
    J Org Chem; 2023 Aug; 88(15):11010-11022. PubMed ID: 37463356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A one-pot oxidative decarboxylation-Friedel-Crafts reaction of acyclic alpha-amino acid derivatives activated by the combination of iodobenzene diacetate/iodine and iron dust.
    Fan R; Li W; Wang B
    Org Biomol Chem; 2008 Dec; 6(24):4615-21. PubMed ID: 19039371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocatalyst-free hypervalent iodine reagent catalyzed decarboxylative acylarylation of acrylamides with α-oxocarboxylic acids driven by visible-light irradiation.
    Ji W; Tan H; Wang M; Li P; Wang L
    Chem Commun (Camb); 2016 Jan; 52(7):1462-5. PubMed ID: 26649450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visible Light Mediated Photoredox Catalytic Arylation Reactions.
    Ghosh I; Marzo L; Das A; Shaikh R; König B
    Acc Chem Res; 2016 Aug; 49(8):1566-77. PubMed ID: 27482835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemo- and Regioselective Organo-Photoredox Catalyzed Hydroformylation of Styrenes via a Radical Pathway.
    Huang H; Yu C; Zhang Y; Zhang Y; Mariano PS; Wang W
    J Am Chem Soc; 2017 Jul; 139(29):9799-9802. PubMed ID: 28692260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluoride-Catalyzed Deblocking: A Route to Polymeric Urethanes.
    Sheri M; Choudhary U; Grandhee S; Emrick T
    Angew Chem Int Ed Engl; 2018 Apr; 57(17):4599-4602. PubMed ID: 29473270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photo-on-Demand Phosgenation Reactions with Chloroform for Selective Syntheses of N-Substituted Ureas and Isocyanates.
    Muranaka R; Liu Y; Okada I; Okazoe T; Tsuda A
    ACS Omega; 2022 Feb; 7(6):5584-5594. PubMed ID: 35187373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-pot conversion of trimethylsilyl ethers into urethanes using chlorosulfonyl isocyanate: application to the synthesis of a novel neuromodulator carisbamate.
    Dong GR; Li QR; Woo SH; Kim IS; Jung YH
    Arch Pharm Res; 2008 Nov; 31(11):1393-8. PubMed ID: 19023534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.