BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 30073386)

  • 1. Online visual cues can compensate for deficits in cutaneous feedback from the dorsal ankle joint for the trailing limb but not the leading limb during obstacle crossing.
    Howe EE; Toth AJ; Bent LR
    Exp Brain Res; 2018 Nov; 236(11):2887-2898. PubMed ID: 30073386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Baseline skin information from the foot dorsum is used to control lower limb kinematics during level walking.
    Howe EE; Toth AJ; Vallis LA; Bent LR
    Exp Brain Res; 2015 Aug; 233(8):2477-87. PubMed ID: 26019009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cutaneous reflex modulation during obstacle avoidance under conditions of normal and degraded visual input.
    Marigold DS; Chang AJ; Lajoie K
    Exp Brain Res; 2017 Aug; 235(8):2483-2493. PubMed ID: 28512726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical risk factors for tripping during obstacle--Crossing with the trailing limb in patients with type II diabetes mellitus.
    Hsu WC; Liu MW; Lu TW
    Gait Posture; 2016 Mar; 45():103-9. PubMed ID: 26979890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of distant and on-line visual information on the control of approach phase and step over an obstacle during locomotion.
    Mohagheghi AA; Moraes R; Patla AE
    Exp Brain Res; 2004 Apr; 155(4):459-68. PubMed ID: 14770275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Placing the trailing foot closer to an obstacle reduces flexion of the hip, knee, and ankle to increase the risk of tripping.
    Chou LS; Draganich LF
    J Biomech; 1998 Aug; 31(8):685-91. PubMed ID: 9796668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restricting ankle motion via orthotic bracing reduces toe clearance when walking over obstacles.
    Evangelopoulou E; Twiste M; Buckley JG
    Gait Posture; 2016 Jan; 43():251-6. PubMed ID: 26520598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensorimotor integration of vision and proprioception for obstacle crossing in ambulatory individuals with spinal cord injury.
    Malik RN; Cote R; Lam T
    J Neurophysiol; 2017 Jan; 117(1):36-46. PubMed ID: 27733593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual guidance of landing behaviour when stepping down to a new level.
    Buckley JG; MacLellan MJ; Tucker MW; Scally AJ; Bennett SJ
    Exp Brain Res; 2008 Jan; 184(2):223-32. PubMed ID: 17726604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of aging on whole body and segmental control while obstacle crossing under impaired sensory conditions.
    Novak AC; Deshpande N
    Hum Mov Sci; 2014 Jun; 35():121-30. PubMed ID: 24746603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinematic strategies for obstacle-crossing in patients with isolated posterior cruciate ligament deficiency.
    Kuo MY; Hong SW; Leu TH; Kuo CC; Lu TW; Wang JH
    Gait Posture; 2017 Sep; 57():21-27. PubMed ID: 28551467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stepping over an obstacle increases the motions and moments of the joints of the trailing limb in young adults.
    Chou LS; Draganich LF
    J Biomech; 1997 Apr; 30(4):331-7. PubMed ID: 9075000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of walking speed on obstacle crossing in healthy young and healthy older adults.
    Draganich LF; Kuo CE
    J Biomech; 2004 Jun; 37(6):889-96. PubMed ID: 15111076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Foot strike alters ground reaction force and knee load when stepping down during ongoing walking.
    Moudy SC; Tillin NA; Sibley AR; Strike S
    Gait Posture; 2020 Feb; 76():327-333. PubMed ID: 31896535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of adaptive locomotion: effect of visual obstruction and visual cues in the environment.
    Rietdyk S; Rhea CK
    Exp Brain Res; 2006 Feb; 169(2):272-8. PubMed ID: 16421728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Obstacle crossing in lower limb amputees.
    Vrieling AH; van Keeken HG; Schoppen T; Otten E; Halbertsma JP; Hof AL; Postema K
    Gait Posture; 2007 Oct; 26(4):587-94. PubMed ID: 17275306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The contribution of vision, proprioception, and efference copy in storing a neural representation for guiding trail leg trajectory over an obstacle.
    Lajoie K; Bloomfield LW; Nelson FJ; Suh JJ; Marigold DS
    J Neurophysiol; 2012 Apr; 107(8):2283-93. PubMed ID: 22298832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibrotactile stimulation of fast-adapting cutaneous afferents from the foot modulates proprioception at the ankle joint.
    Mildren RL; Bent LR
    J Appl Physiol (1985); 2016 Apr; 120(8):855-64. PubMed ID: 26823342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utility of peripheral visual cues in planning and controlling adaptive gait.
    Graci V; Elliott DB; Buckley JG
    Optom Vis Sci; 2010 Jan; 87(1):21-7. PubMed ID: 19918210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.