BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30073387)

  • 1. The mesencephalic-hypoglossal nuclei loop as a possible central pattern generator for rhythmical whisking in rats.
    Caria MA; Biagi F; Mameli O
    Exp Brain Res; 2018 Nov; 236(11):2899-2911. PubMed ID: 30073387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for a trigeminal mesencephalic-hypoglossal nuclei loop involved in controlling vibrissae movements in the rat.
    Mameli O; Caria MA; Pellitteri R; Russo A; Saccone S; Stanzani S
    Exp Brain Res; 2016 Mar; 234(3):753-61. PubMed ID: 26645304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of trigeminal mesencephalic nucleus in kinetic encoding of whisker movements.
    Mameli O; Stanzani S; Russo A; Pellitteri R; Manca P; De Riu PL; Caria MA
    Brain Res Bull; 2014 Mar; 102():37-45. PubMed ID: 24518654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurons within the trigeminal mesencephalic nucleus encode for the kinematic parameters of the whisker pad macrovibrissae.
    Mameli O; Caria MA; Biagi F; Zedda M; Farina V
    Physiol Rep; 2017 May; 5(10):e13206. PubMed ID: 28546281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the trigeminal mesencephalic nucleus in rat whisker pad proprioception.
    Mameli O; Stanzani S; Mulliri G; Pellitteri R; Caria MA; Russo A; De Riu P
    Behav Brain Funct; 2010 Nov; 6():69. PubMed ID: 21078134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypoglossal nuclei participation in rat mystacial pad control.
    Mameli O; Stanzani S; Russo A; Romeo R; Pellitteri R; Spatuzza M; Caria MA; De Riu PL
    Pflugers Arch; 2008 Sep; 456(6):1189-98. PubMed ID: 18301914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoglossal nucleus projections to the rat masseter muscle.
    Mameli O; Stanzani S; Russo A; Pellitteri R; Spatuzza M; Caria MA; Mulliri G; De Riu PL
    Brain Res; 2009 Aug; 1283():34-40. PubMed ID: 19523459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Significance of trigeminal sensory input on regrowth of hypoglossal and facial motoneurons after hypoglossal facial anastomosis in rats.
    Streppel M; Popratiloff A; Angelov DN; Guntinas-Lichius O; Hilgers RD; Stennert E; Neiss WF
    Acta Otolaryngol; 1998 Nov; 118(6):790-6. PubMed ID: 9870621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of rhythmical ingestive activities of the trigeminal, facial, and hypoglossal motoneurons in in vitro CNS preparations isolated from rats and mice.
    Nakamura Y; Katakura N; Nakajima M
    J Med Dent Sci; 1999 Jun; 46(2):63-73. PubMed ID: 10805320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whisker deafferentation and rodent whisking patterns: behavioral evidence for a central pattern generator.
    Gao P; Bermejo R; Zeigler HP
    J Neurosci; 2001 Jul; 21(14):5374-80. PubMed ID: 11438614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the trigeminal nerve in regrowth of hypoglossal motoneurons after hypoglossal-facial anastomosis.
    Mameli O; Pellitteri R; Russo A; Stanzani S; Caria MA; De Riu PL
    Acta Otolaryngol; 2006 Dec; 126(12):1334-8. PubMed ID: 17101597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular control.
    Berg RW; Kleinfeld D
    J Neurophysiol; 2003 Jan; 89(1):104-17. PubMed ID: 12522163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensorimotor integration in the whisker somatosensory brain stem trigeminal loop.
    Tsur O; Khrapunsky Y; Azouz R
    J Neurophysiol; 2019 Nov; 122(5):2061-2075. PubMed ID: 31533013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhythmic whisking area (RW) in rat primary motor cortex: an internal monitor of movement-related signals?
    Gerdjikov TV; Haiss F; Rodriguez-Sierra OE; Schwarz C
    J Neurosci; 2013 Aug; 33(35):14193-204. PubMed ID: 23986253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Location, morphology, and central projections of mesencephalic trigeminal neurons innervating rat masticatory muscles studied by axonal transport of choleragenoid-horseradish peroxidase.
    Raappana P; Arvidsson J
    J Comp Neurol; 1993 Feb; 328(1):103-14. PubMed ID: 8429123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rat whisker movement after facial nerve lesion: evidence for autonomic contraction of skeletal muscle.
    Heaton JT; Sheu SH; Hohman MH; Knox CJ; Weinberg JS; Kleiss IJ; Hadlock TA
    Neuroscience; 2014 Apr; 265():9-20. PubMed ID: 24480367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Localization of central rhythm generator for tongue movements in sucking--analysis of isolated brainstem-spinal cord preparation from newborn rats].
    Jia L
    Kokubyo Gakkai Zasshi; 1997 Dec; 64(4):499-511. PubMed ID: 9483893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered sensory input improves the accuracy of muscle reinnervation.
    Skouras E; Popratiloff A; Guntinas-Lichius O; Streppel M; Rehm KE; Neiss WF; Angelov DN
    Restor Neurol Neurosci; 2002; 20(1-2):1-14. PubMed ID: 12237492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whisking recovery after automated mechanical stimulation during facial nerve regeneration.
    Kleiss IJ; Knox CJ; Malo JS; Marres HA; Hadlock TA; Heaton JT
    JAMA Facial Plast Surg; 2014; 16(2):133-9. PubMed ID: 24407357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Brainstem segmental arrangement of sucking rhythm generators for trigeminal, facial and hypoglossal motoneurons].
    Nakajima M
    Kokubyo Gakkai Zasshi; 1999 Mar; 66(1):88-97. PubMed ID: 10332151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.