BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 30073539)

  • 1. Overexpression of cytochrome p450 125 in Mycobacterium: a rational strategy in the promotion of phytosterol biotransformation.
    Su L; Shen Y; Xia M; Shang Z; Xu S; An X; Wang M
    J Ind Microbiol Biotechnol; 2018 Oct; 45(10):857-867. PubMed ID: 30073539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cofactor engineering to regulate NAD
    Su L; Shen Y; Zhang W; Gao T; Shang Z; Wang M
    Microb Cell Fact; 2017 Oct; 16(1):182. PubMed ID: 29084539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered 3-Ketosteroid 9α-Hydroxylases in Mycobacterium neoaurum: an Efficient Platform for Production of Steroid Drugs.
    Liu HH; Xu LQ; Yao K; Xiong LB; Tao XY; Liu M; Wang FQ; Wei DZ
    Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29728384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of steroid C27 monooxygenase isoenzymes involved in sterol catabolism and stepwise pathway engineering of Mycobacterium neoaurum for improved androst-1,4-diene-3,17-dione production.
    Shao M; Zhang X; Rao Z; Xu M; Yang T; Xu Z; Yang S
    J Ind Microbiol Biotechnol; 2019 May; 46(5):635-647. PubMed ID: 30790119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of hydroxypropyl-β-cyclodextrin on phytosterol biotransformation by different strains of Mycobacterium neoaurum.
    Shen YB; Wang M; Li HN; Wang YB; Luo JM
    J Ind Microbiol Biotechnol; 2012 Sep; 39(9):1253-9. PubMed ID: 22614451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving phytosterol biotransformation at low nitrogen levels by enhancing the methylcitrate cycle with transcriptional regulators PrpR and GlnR of Mycobacterium neoaurum.
    Zhang Y; Zhou X; Wang X; Wang L; Xia M; Luo J; Shen Y; Wang M
    Microb Cell Fact; 2020 Jan; 19(1):13. PubMed ID: 31992309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mutant form of 3-ketosteroid-Δ(1)-dehydrogenase gives altered androst-1,4-diene-3, 17-dione/androst-4-ene-3,17-dione molar ratios in steroid biotransformations by Mycobacterium neoaurum ST-095.
    Shao M; Zhang X; Rao Z; Xu M; Yang T; Li H; Xu Z; Yang S
    J Ind Microbiol Biotechnol; 2016 May; 43(5):691-701. PubMed ID: 26886757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Sterol Carrier Hydroxypropyl-β-Cyclodextrin Enhances the Metabolism of Phytosterols by Mycobacterium neoaurum.
    Su L; Xu S; Shen Y; Xia M; Ren X; Wang L; Shang Z; Wang M
    Appl Environ Microbiol; 2020 Jul; 86(15):. PubMed ID: 32414803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic differences in ksdD influence on the ADD/AD ratio of Mycobacterium neoaurum.
    Xie R; Shen Y; Qin N; Wang Y; Su L; Wang M
    J Ind Microbiol Biotechnol; 2015 Apr; 42(4):507-13. PubMed ID: 25572208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient production of androstenedione by repeated batch fermentation in waste cooking oil media through regulating NAD
    Zhou X; Zhang Y; Shen Y; Zhang X; Xu S; Shang Z; Xia M; Wang M
    Bioresour Technol; 2019 May; 279():209-217. PubMed ID: 30735930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of AD Biosynthesis Response to Enhanced Oxygen Transfer by Oxygen Vectors in Mycobacterium neoaurum TCCC 11979.
    Su L; Shen Y; Gao T; Luo J; Wang M
    Appl Biochem Biotechnol; 2017 Aug; 182(4):1564-1574. PubMed ID: 28120242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrate Metabolism Decreases the Steroidal Alcohol Byproduct Compared with Ammonium in Biotransformation of Phytosterol to Androstenedione by Mycobacterium neoaurum.
    Wang X; Chen R; Wu Y; Wang D; Wei D
    Appl Biochem Biotechnol; 2020 Apr; 190(4):1553-1560. PubMed ID: 31792785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Mutation breeding of high 9α-hydroxy-androst-4-ene-3,17- dione transforming strains from phytosterols and their conversion process optimization].
    Ma Y; Wang X; Wang M; Li H; Shi J; Xu Z
    Sheng Wu Gong Cheng Xue Bao; 2017 Jul; 33(7):1198-1206. PubMed ID: 28869739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic Techniques for Manipulation of the Phytosterol Biotransformation Strain Mycobacterium neoaurum NRRL B-3805.
    Loraine JK; Smith MCM
    Methods Mol Biol; 2017; 1645():93-108. PubMed ID: 28710623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loop pathways are responsible for tuning the accumulation of C19- and C22-sterol intermediates in the mycobacterial phytosterol degradation pathway.
    Song S; He J; Gao M; Huang Y; Cheng X; Su Z
    Microb Cell Fact; 2023 Jan; 22(1):19. PubMed ID: 36710325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role Identification and Application of SigD in the Transformation of Soybean Phytosterol to 9α-Hydroxy-4-androstene-3,17-dione in Mycobacterium neoaurum.
    Xiong LB; Liu HH; Xu LQ; Wei DZ; Wang FQ
    J Agric Food Chem; 2017 Jan; 65(3):626-631. PubMed ID: 28035826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of temperature on nucleus degradation of 4-androstene-3, 17-dione in phytosterol biotransformation by Mycobacterium sp.
    Xu XW; Gao XQ; Feng JX; Wang XD; Wei DZ
    Lett Appl Microbiol; 2015 Jul; 61(1):63-8. PubMed ID: 25868395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of genes encoding key steroid core oxidation enzymes in fast-growing Mycobacterium spp. strains.
    Bragin EY; Shtratnikova VY; Dovbnya DV; Schelkunov MI; Pekov YA; Malakho SG; Egorova OV; Ivashina TV; Sokolov SL; Ashapkin VV; Donova MV
    J Steroid Biochem Mol Biol; 2013 Nov; 138():41-53. PubMed ID: 23474435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production and Biotransformation of Phytosterol Microdispersions to Produce 4-Androstene-3,17-Dione.
    Mancilla RA; Pavez-Díaz R; Amoroso A
    Methods Mol Biol; 2017; 1645():159-165. PubMed ID: 28710627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the production of 22-hydroxy-23,24-bisnorchol-4-ene-3-one from sterols in Mycobacterium neoaurum by increasing cell permeability and modifying multiple genes.
    Xiong LB; Liu HH; Xu LQ; Sun WJ; Wang FQ; Wei DZ
    Microb Cell Fact; 2017 May; 16(1):89. PubMed ID: 28532497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.