These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 30073558)

  • 21. Symmetric BEM formulation for the M/EEG forward problem.
    Adde G; Clerc M; Faugeras O; Keriven R; Kybic J; Papadopoulo T
    Inf Process Med Imaging; 2003 Jul; 18():524-35. PubMed ID: 15344485
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of anisotropic electrical conductivity in white matter tissue on the EEG/MEG forward and inverse solution. A high-resolution whole head simulation study.
    Güllmar D; Haueisen J; Reichenbach JR
    Neuroimage; 2010 May; 51(1):145-63. PubMed ID: 20156576
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative performance of the finite element method and the boundary element fast multipole method for problems mimicking transcranial magnetic stimulation (TMS).
    Htet AT; Saturnino GB; Burnham EH; Noetscher GM; Nummenmaa A; Makarov SN
    J Neural Eng; 2019 Apr; 16(2):024001. PubMed ID: 30605893
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3-D diffusion tensor MRI anisotropy content-adaptive finite element head model generation for bioelectromagnetic imaging.
    Lee WH; Kim TS; Kim AT; Lee SY
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4003-6. PubMed ID: 19163590
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Forward and inverse problems of EEG dipole localization.
    Musha T; Okamoto Y
    Crit Rev Biomed Eng; 1999; 27(3-5):189-239. PubMed ID: 10864280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling.
    Wolters CH; Anwander A; Tricoche X; Weinstein D; Koch MA; MacLeod RS
    Neuroimage; 2006 Apr; 30(3):813-26. PubMed ID: 16364662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Brainstorm-DUNEuro: An integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity.
    Medani T; Garcia-Prieto J; Tadel F; Antonakakis M; Erdbrügger T; Höltershinken M; Mead W; Schrader S; Joshi A; Engwer C; Wolters CH; Mosher JC; Leahy RM
    Neuroimage; 2023 Feb; 267():119851. PubMed ID: 36599389
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electric field calculations in brain stimulation based on finite elements: an optimized processing pipeline for the generation and usage of accurate individual head models.
    Windhoff M; Opitz A; Thielscher A
    Hum Brain Mapp; 2013 Apr; 34(4):923-35. PubMed ID: 22109746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conservative Finite Element Modeling of EEG and MEG on Unstructured Grids.
    Yavich N; Koshev N; Malovichko M; Razorenova A; Fedorov M
    IEEE Trans Med Imaging; 2022 Mar; 41(3):647-656. PubMed ID: 34644251
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Review on solving the forward problem in EEG source analysis.
    Hallez H; Vanrumste B; Grech R; Muscat J; De Clercq W; Vergult A; D'Asseler Y; Camilleri KP; Fabri SG; Van Huffel S; Lemahieu I
    J Neuroeng Rehabil; 2007 Nov; 4():46. PubMed ID: 18053144
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Forward field computation with OpenMEEG.
    Gramfort A; Papadopoulo T; Olivi E; Clerc M
    Comput Intell Neurosci; 2011; 2011():923703. PubMed ID: 21437231
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensitivity of the Projected Subtraction Approach to Mesh Degeneracies and Its Impact on the Forward Problem in EEG.
    Beltrachini L
    IEEE Trans Biomed Eng; 2019 Jan; 66(1):273-282. PubMed ID: 29993440
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Methods and evaluations of MRI content-adaptive finite element mesh generation for bioelectromagnetic problems.
    Lee WH; Kim TS; Cho MH; Ahn YB; Lee SY
    Phys Med Biol; 2006 Dec; 51(23):6173-86. PubMed ID: 17110778
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved forward EEG calculations using local mesh refinement of realistic head geometries.
    Yvert B; Bertrand O; Echallier JF; Pernier J
    Electroencephalogr Clin Neurophysiol; 1995 Nov; 95(5):381-92. PubMed ID: 7489667
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The New York Head-A precise standardized volume conductor model for EEG source localization and tES targeting.
    Huang Y; Parra LC; Haufe S
    Neuroimage; 2016 Oct; 140():150-62. PubMed ID: 26706450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Finite Element Solution of the Forward Problem in EEG for Multipolar Sources.
    Beltrachini L
    IEEE Trans Neural Syst Rehabil Eng; 2019 Mar; 27(3):368-377. PubMed ID: 30561347
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A simple method for EEG guided transcranial electrical stimulation without models.
    Cancelli A; Cottone C; Tecchio F; Truong DQ; Dmochowski J; Bikson M
    J Neural Eng; 2016 Jun; 13(3):036022. PubMed ID: 27172063
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dipole models for the EEG and MEG.
    Schimpf PH; Ramon C; Haueisen J
    IEEE Trans Biomed Eng; 2002 May; 49(5):409-18. PubMed ID: 12002172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational aspects of finite element modeling in EEG source localization.
    Awada KA; Jackson DR; Williams JT; Wilton DR; Baumann SB; Papanicolaou AC
    IEEE Trans Biomed Eng; 1997 Aug; 44(8):736-52. PubMed ID: 9254987
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A cortical potential imaging study from simultaneous extra- and intracranial electrical recordings by means of the finite element method.
    Zhang Y; Ding L; van Drongelen W; Hecox K; Frim DM; He B
    Neuroimage; 2006 Jul; 31(4):1513-24. PubMed ID: 16631381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.