These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 30073673)

  • 21. The production of 3D tumor spheroids for cancer drug discovery.
    Sant S; Johnston PA
    Drug Discov Today Technol; 2017 Mar; 23():27-36. PubMed ID: 28647083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of the hollow fiber assay for the evaluation of DNA damaging agents.
    Veiga JP; Cooper PA; Pors K; Patterson LH; Bibby MC; Shnyder SD
    J Pharmacol Toxicol Methods; 2011; 64(3):226-32. PubMed ID: 21569858
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Zebrafish: Speeding Up the Cancer Drug Discovery Process.
    Letrado P; de Miguel I; Lamberto I; Díez-Martínez R; Oyarzabal J
    Cancer Res; 2018 Nov; 78(21):6048-6058. PubMed ID: 30327381
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Generation of Multicellular Tumor Spheroids with Microwell-Based Agarose Scaffolds for Drug Testing.
    Gong X; Lin C; Cheng J; Su J; Zhao H; Liu T; Wen X; Zhao P
    PLoS One; 2015; 10(6):e0130348. PubMed ID: 26090664
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D Cell-Based Assays for Drug Screens: Challenges in Imaging, Image Analysis, and High-Content Analysis.
    Booij TH; Price LS; Danen EHJ
    SLAS Discov; 2019 Jul; 24(6):615-627. PubMed ID: 30817892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs.
    Kong D; Yamori T
    Bioorg Med Chem; 2012 Mar; 20(6):1947-51. PubMed ID: 22336246
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spontaneously-forming spheroids as an in vitro cancer cell model for anticancer drug screening.
    Theodoraki MA; Rezende CO; Chantarasriwong O; Corben AD; Theodorakis EA; Alpaugh ML
    Oncotarget; 2015 Aug; 6(25):21255-67. PubMed ID: 26101913
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overview on the current status of virtual high-throughput screening and combinatorial chemistry approaches in multi-target anticancer drug discovery; Part I.
    Geromichalos GD; Alifieris CE; Geromichalou EG; Trafalis DT
    J BUON; 2016; 21(4):764-779. PubMed ID: 27685895
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiparametric Analysis of Oncology Drug Screening with Aqueous Two-Phase Tumor Spheroids.
    Shahi Thakuri P; Ham SL; Luker GD; Tavana H
    Mol Pharm; 2016 Nov; 13(11):3724-3735. PubMed ID: 27653969
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The HLJ1-targeting drug screening identified Chinese herb andrographolide that can suppress tumour growth and invasion in non-small-cell lung cancer.
    Lai YH; Yu SL; Chen HY; Wang CC; Chen HW; Chen JJ
    Carcinogenesis; 2013 May; 34(5):1069-80. PubMed ID: 23306212
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Animal models of disease: pre-clinical animal models of cancer and their applications and utility in drug discovery.
    Ruggeri BA; Camp F; Miknyoczki S
    Biochem Pharmacol; 2014 Jan; 87(1):150-61. PubMed ID: 23817077
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Discovery of novel drugs for promising targets.
    Martell RE; Brooks DG; Wang Y; Wilcoxen K
    Clin Ther; 2013 Sep; 35(9):1271-81. PubMed ID: 24054704
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In Vitro and In Vivo Approaches for Screening the Potential of Anticancer Agents: A Review.
    Mishra R; Mishra PS; Varshney S; Mazumder R; Mazumder A
    Curr Drug Discov Technol; 2022; 19(3):e060122200071. PubMed ID: 34994330
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of anti-tumour biologics using primary tumour models, 3-D phenotypic screening and image-based multi-parametric profiling.
    Sandercock AM; Rust S; Guillard S; Sachsenmeier KF; Holoweckyj N; Hay C; Flynn M; Huang Q; Yan K; Herpers B; Price LS; Soden J; Freeth J; Jermutus L; Hollingsworth R; Minter R
    Mol Cancer; 2015 Jul; 14():147. PubMed ID: 26227951
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeting cancer cells by exploiting karyotypic complexity and chromosomal instability.
    Roschke AV; Kirsch IR
    Cell Cycle; 2005 May; 4(5):679-82. PubMed ID: 15846096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Small molecule inhibitor screening identifified HSP90 inhibitor 17-AAG as potential therapeutic agent for gallbladder cancer.
    Weber H; Valbuena JR; Barbhuiya MA; Stein S; Kunkel H; García P; Bizama C; Riquelme I; Espinoza JA; Kurtz SE; Tyner JW; Calderon JF; Corvalán AH; Grez M; Pandey A; Leal-Rojas P; Roa JC
    Oncotarget; 2017 Apr; 8(16):26169-26184. PubMed ID: 28412732
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microfluidic 3D models of cancer.
    Sung KE; Beebe DJ
    Adv Drug Deliv Rev; 2014 Dec; 79-80():68-78. PubMed ID: 25017040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A natural products approach to drug discovery: probing modes of action of antitumor agents by genome-scale cDNA library screening.
    Luesch H; Abreu P
    Methods Mol Biol; 2009; 572():261-77. PubMed ID: 20694698
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Developments in preclinical cancer imaging: innovating the discovery of therapeutics.
    Conway JR; Carragher NO; Timpson P
    Nat Rev Cancer; 2014 May; 14(5):314-28. PubMed ID: 24739578
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thymidylate synthase as a molecular target for drug discovery using the National Cancer Institute's Anticancer Drug Screen.
    Parr AL; Myers TG; Holbeck SL; Loh YJ; Allegra CJ
    Anticancer Drugs; 2001 Aug; 12(7):569-74. PubMed ID: 11487712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.