These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30073788)

  • 1. Catalytic Transfer Hydrogenation Using Biomass as Hydrogen Source.
    Manna S; Antonchick AP
    ChemSusChem; 2019 Jul; 12(13):3094-3098. PubMed ID: 30073788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An alkene-promoted borane-catalyzed highly stereoselective hydrogenation of alkynes to give Z- and E-alkenes.
    Liu Y; Hu L; Chen H; Du H
    Chemistry; 2015 Feb; 21(8):3495-501. PubMed ID: 25589473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring Hydrogen Sources in Catalytic Transfer Hydrogenation: A Review of Unsaturated Compound Reduction.
    Taleb B; Jahjah R; Cornu D; Bechelany M; Al Ajami M; Kataya G; Hijazi A; El-Dakdouki MH
    Molecules; 2023 Nov; 28(22):. PubMed ID: 38005261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic Transfer Hydrogenation of Biomass-Derived Carbonyls over Hafnium-Based Metal-Organic Frameworks.
    Rojas-Buzo S; García-García P; Corma A
    ChemSusChem; 2018 Jan; 11(2):432-438. PubMed ID: 29139603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhodium-terpyridine Catalyzed Transfer Hydrogenation of Aromatic Nitro Compounds in Water.
    Liu Y; Miao W; Tang W; Xue D; Xiao J; Wang C; Li C
    Chem Asian J; 2021 Jul; 16(13):1725-1729. PubMed ID: 33950565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic Transfer Hydrogenation of Arenes and Heteroarenes.
    Gelis C; Heusler A; Nairoukh Z; Glorius F
    Chemistry; 2020 Nov; 26(62):14090-14094. PubMed ID: 32519788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions.
    Chelucci G; Baldino S; Baratta W
    Acc Chem Res; 2015 Feb; 48(2):363-79. PubMed ID: 25650714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic conversion of nonfood woody biomass solids to organic liquids.
    Barta K; Ford PC
    Acc Chem Res; 2014 May; 47(5):1503-12. PubMed ID: 24745655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalyst-Free Transfer Hydrogenation of Activated Alkenes Exploiting Isopropanol as the Sole and Traceless Reductant.
    Das TK; Rodriguez Treviño AM; Pandiri S; Irvankoski S; Siito-Nen JH; Rodriguez SM; Yousufuddin M; Kürti L
    Green Chem; 2023 Jan; 25(2):746-754. PubMed ID: 37637778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereoselective hydrogenation of olefins using rhodium-substituted carbonic anhydrase--a new reductase.
    Jing Q; Okrasa K; Kazlauskas RJ
    Chemistry; 2009; 15(6):1370-6. PubMed ID: 19115310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promoters in the hydrogenation of alkynes in mixtures: insights from density functional theory.
    López N; Vargas-Fuentes C
    Chem Commun (Camb); 2012 Feb; 48(10):1379-91. PubMed ID: 22114762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition-metal-free semihydrogenation of diarylalkynes: highly stereoselective synthesis of trans-alkenes using Na2S·9H2O.
    Chen Z; Luo M; Wen Y; Luo G; Liu L
    Org Lett; 2014 Jun; 16(11):3020-3. PubMed ID: 24848154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly chemo- and stereoselective palladium-catalyzed transfer semihydrogenation of internal alkynes affording cis-alkenes.
    Li J; Hua R; Liu T
    J Org Chem; 2010 May; 75(9):2966-70. PubMed ID: 20345142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Synthesis of 5-Methylfurfural from d-Fructose by Iodide-Mediated Transfer Hydrogenation.
    Xu J; Miao X; Liu L; Wang Y; Yang W
    ChemSusChem; 2021 Dec; 14(23):5311-5319. PubMed ID: 34612600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen-mediated reductive coupling of conjugated alkynes with ethyl (N-Sulfinyl)iminoacetates: synthesis of unnatural alpha-amino acids via rhodium-catalyzed C-C bond forming hydrogenation.
    Kong JR; Cho CW; Krische MJ
    J Am Chem Soc; 2005 Aug; 127(32):11269-76. PubMed ID: 16089454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly selective electrochemical hydrogenation of alkynes: Rapid construction of mechanochromic materials.
    Li B; Ge H
    Sci Adv; 2019 May; 5(5):eaaw2774. PubMed ID: 31139749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemo- and regioselective homogeneous rhodium-catalyzed hydroamidomethylation of terminal alkenes to N-alkylamides.
    Raoufmoghaddam S; Drent E; Bouwman E
    ChemSusChem; 2013 Sep; 6(9):1759-73. PubMed ID: 24009108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoporous gold catalyst for highly selective semihydrogenation of alkynes: remarkable effect of amine additives.
    Yan M; Jin T; Ishikawa Y; Minato T; Fujita T; Chen LY; Bao M; Asao N; Chen MW; Yamamoto Y
    J Am Chem Soc; 2012 Oct; 134(42):17536-42. PubMed ID: 23020313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic Insights and Computational Design of Transition-Metal Catalysts for Hydrogenation and Dehydrogenation Reactions.
    Chen X; Yang X
    Chem Rec; 2016 Oct; 16(5):2364-2378. PubMed ID: 27500503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First catalytic reductive coupling of 1,3-diynes to carbonyl partners: a new regio- and enantioselective C-C bond forming hydrogenation.
    Huddleston RR; Jang HY; Krische MJ
    J Am Chem Soc; 2003 Sep; 125(38):11488-9. PubMed ID: 13129338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.