These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 30073927)
1. Exploring Proteomic Drug Targets, Therapeutic Strategies and Protein - Protein Interactions in Cancer: Mechanistic View. Dar KB; Bhat AH; Amin S; Anjum S; Reshi BA; Zargar MA; Masood A; Ganie SA Curr Cancer Drug Targets; 2019; 19(6):430-448. PubMed ID: 30073927 [TBL] [Abstract][Full Text] [Related]
2. Inside the biochemical pathways of thymidylate synthase perturbed by anticancer drugs: Novel strategies to overcome cancer chemoresistance. Taddia L; D'Arca D; Ferrari S; Marraccini C; Severi L; Ponterini G; Assaraf YG; Marverti G; Costi MP Drug Resist Updat; 2015 Nov; 23():20-54. PubMed ID: 26690339 [TBL] [Abstract][Full Text] [Related]
3. The disruption of protein-protein interactions as a therapeutic strategy for prostate cancer. Matos B; Howl J; Jerónimo C; Fardilha M Pharmacol Res; 2020 Nov; 161():105145. PubMed ID: 32814172 [TBL] [Abstract][Full Text] [Related]
4. Protein-protein interactions and cancer: small molecules going in for the kill. Arkin M Curr Opin Chem Biol; 2005 Jun; 9(3):317-24. PubMed ID: 15939335 [TBL] [Abstract][Full Text] [Related]
5. Targeting the Architecture of Deregulated Protein Complexes in Cancer. Stefan E; Troppmair J; Bister K Adv Protein Chem Struct Biol; 2018; 111():101-132. PubMed ID: 29459029 [TBL] [Abstract][Full Text] [Related]
6. Human Interactomics: Comparative Analysis of Different Protein Interaction Resources and Construction of a Cancer Protein-Drug Bipartite Network. De Las Rivas J; Alonso-López D; Arroyo MM Adv Protein Chem Struct Biol; 2018; 111():263-282. PubMed ID: 29459035 [TBL] [Abstract][Full Text] [Related]
7. Plumbagin elicits differential proteomic responses mainly involving cell cycle, apoptosis, autophagy, and epithelial-to-mesenchymal transition pathways in human prostate cancer PC-3 and DU145 cells. Qiu JX; Zhou ZW; He ZX; Zhao RJ; Zhang X; Yang L; Zhou SF; Mao ZF Drug Des Devel Ther; 2015; 9():349-417. PubMed ID: 25609920 [TBL] [Abstract][Full Text] [Related]
8. Targeting protein-protein interactions as an anticancer strategy. Ivanov AA; Khuri FR; Fu H Trends Pharmacol Sci; 2013 Jul; 34(7):393-400. PubMed ID: 23725674 [TBL] [Abstract][Full Text] [Related]
10. The Role of Grb2 in Cancer and Peptides as Grb2 Antagonists. Ijaz M; Wang F; Shahbaz M; Jiang W; Fathy AH; Nesa EU Protein Pept Lett; 2018 Feb; 24(12):1084-1095. PubMed ID: 29173143 [TBL] [Abstract][Full Text] [Related]
11. ProTargetMiner as a proteome signature library of anticancer molecules for functional discovery. Saei AA; Beusch CM; Chernobrovkin A; Sabatier P; Zhang B; Tokat ÜG; Stergiou E; Gaetani M; Végvári Á; Zubarev RA Nat Commun; 2019 Dec; 10(1):5715. PubMed ID: 31844049 [TBL] [Abstract][Full Text] [Related]
12. Proteomic profiling predicts drug response to novel targeted anticancer therapeutics. Lin F; Li Z; Hua Y; Lim YP Expert Rev Proteomics; 2016; 13(4):411-20. PubMed ID: 26954459 [TBL] [Abstract][Full Text] [Related]
13. Targeting Eph/ephrin system in cancer therapy. Lodola A; Giorgio C; Incerti M; Zanotti I; Tognolini M Eur J Med Chem; 2017 Dec; 142():152-162. PubMed ID: 28780190 [TBL] [Abstract][Full Text] [Related]
14. Discovery of Selective Small-Molecule Inhibitors for the β-Catenin/T-Cell Factor Protein-Protein Interaction through the Optimization of the Acyl Hydrazone Moiety. Catrow JL; Zhang Y; Zhang M; Ji H J Med Chem; 2015 Jun; 58(11):4678-92. PubMed ID: 25985283 [TBL] [Abstract][Full Text] [Related]
15. SH2 and SH3 domains as targets for anti-proliferative agents. Vidal M; Gigoux V; Garbay C Crit Rev Oncol Hematol; 2001 Nov; 40(2):175-86. PubMed ID: 11682324 [TBL] [Abstract][Full Text] [Related]
16. Proteomic response to 5,6-dimethylxanthenone 4-acetic acid (DMXAA, vadimezan) in human non-small cell lung cancer A549 cells determined by the stable-isotope labeling by amino acids in cell culture (SILAC) approach. Pan ST; Zhou ZW; He ZX; Zhang X; Yang T; Yang YX; Wang D; Qiu JX; Zhou SF Drug Des Devel Ther; 2015; 9():937-68. PubMed ID: 25733813 [TBL] [Abstract][Full Text] [Related]
17. Molecular pathways and therapeutic targets in lung cancer. Shtivelman E; Hensing T; Simon GR; Dennis PA; Otterson GA; Bueno R; Salgia R Oncotarget; 2014 Mar; 5(6):1392-433. PubMed ID: 24722523 [TBL] [Abstract][Full Text] [Related]
18. Mass spectrometry-based proteomics: from cancer biology to protein biomarkers, drug targets, and clinical applications. Jimenez CR; Verheul HM Am Soc Clin Oncol Educ Book; 2014; ():e504-10. PubMed ID: 24857147 [TBL] [Abstract][Full Text] [Related]
19. MEDICI: Mining Essentiality Data to Identify Critical Interactions for Cancer Drug Target Discovery and Development. Harati S; Cooper LA; Moran JD; Giuste FO; Du Y; Ivanov AA; Johns MA; Khuri FR; Fu H; Moreno CS PLoS One; 2017; 12(1):e0170339. PubMed ID: 28118365 [TBL] [Abstract][Full Text] [Related]
20. Complex regulation of autophagy in cancer - integrated approaches to discover the networks that hold a double-edged sword. Kubisch J; Türei D; Földvári-Nagy L; Dunai ZA; Zsákai L; Varga M; Vellai T; Csermely P; Korcsmáros T Semin Cancer Biol; 2013 Aug; 23(4):252-61. PubMed ID: 23810837 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]