These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 30073973)

  • 1. Self-induced back action actuated nanopore electrophoresis (SANE).
    Raza MU; Peri SSS; Ma LC; Iqbal SM; Alexandrakis G
    Nanotechnology; 2018 Oct; 29(43):435501. PubMed ID: 30073973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of low affinity binding interactions between natural killer cell inhibitory receptors and targeting ligands with a self-induced back-action actuated nanopore electrophoresis (SANE) sensor.
    Peri SSS; Sabnani MK; Raza MU; Urquhart EL; Ghaffari S; Lee JS; Kim MJ; Weidanz J; Alexandrakis G
    Nanotechnology; 2021 Jan; 32(4):045501. PubMed ID: 33027774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Induced Back-Action Actuated Nanopore Electrophoresis (SANE) Sensor for Label-Free Detection of Cancer Immunotherapy-Relevant Antibody-Ligand Interactions.
    Peri SSS; Raza MU; Sabnani MK; Ghaffari S; Gimlin S; Wawro DD; Lee JS; Kim MJ; Weidanz J; Alexandrakis G
    Methods Mol Biol; 2022; 2394():343-376. PubMed ID: 35094337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of specific antibody-ligand interactions with a self-induced back-action actuated nanopore electrophoresis sensor.
    Peri SSS; Sabnani MK; Raza MU; Ghaffari S; Gimlin S; Wawro DD; Lee JS; Kim MJ; Weidanz J; Alexandrakis G
    Nanotechnology; 2019 Nov; 31(8):085502. PubMed ID: 31675752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical trapping of nanoparticles.
    Bergeron J; Zehtabi-Oskuie A; Ghaffari S; Pang Y; Gordon R
    J Vis Exp; 2013 Jan; (71):e4424. PubMed ID: 23354173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensing nanoparticles using a double nanohole optical trap.
    Kotnala A; DePaoli D; Gordon R
    Lab Chip; 2013 Oct; 13(20):4142-6. PubMed ID: 23969596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volume discrimination of nanoparticles via electrical trapping using nanopores.
    Arima A; Tsutsui M; Taniguchi M
    J Nanobiotechnology; 2019 Mar; 17(1):40. PubMed ID: 30871539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering and Modeling the Electrophoretic Trapping of a Single Protein Inside a Nanopore.
    Willems K; Ruić D; Biesemans A; Galenkamp NS; Van Dorpe P; Maglia G
    ACS Nano; 2019 Sep; 13(9):9980-9992. PubMed ID: 31403770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single Nanoparticle Translocation Through Chemically Modified Solid Nanopore.
    Tan S; Wang L; Liu H; Wu H; Liu Q
    Nanoscale Res Lett; 2016 Dec; 11(1):50. PubMed ID: 26831688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrokinetic particle translocation through a nanopore.
    Ai Y; Qian S
    Phys Chem Chem Phys; 2011 Mar; 13(9):4060-71. PubMed ID: 21229154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FIB-Milled Quartz Nanopores in a Sealed Nanopipette.
    Gunderson CG; Barlow ST; Zhang B
    J Electroanal Chem (Lausanne); 2019 Jan; 833():181-188. PubMed ID: 31447621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing.
    Ayub M; Ivanov A; Hong J; Kuhn P; Instuli E; Edel JB; Albrecht T
    J Phys Condens Matter; 2010 Nov; 22(45):454128. PubMed ID: 21339614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated system for optical and electrical detection of single molecules/particles inside a solid-state nanopore.
    Shi X; Gao R; Ying YL; Si W; Chen Y; Long YT
    Faraday Discuss; 2015; 184():85-99. PubMed ID: 26420730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage-Rectified Current and Fluid Flow in Conical Nanopores.
    Lan WJ; Edwards MA; Luo L; Perera RT; Wu X; Martin CR; White HS
    Acc Chem Res; 2016 Nov; 49(11):2605-2613. PubMed ID: 27689816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contactless optical trapping and manipulation of nanoparticles utilizing SIBA mechanism and EDL force.
    Sahafi M; Habibzadeh-Sharif A
    Opt Express; 2019 Sep; 27(20):28944-28951. PubMed ID: 31684637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FIB-milled plasmonic nanoapertures allow for long trapping times of individual proteins.
    Yang W; van Dijk M; Primavera C; Dekker C
    iScience; 2021 Nov; 24(11):103237. PubMed ID: 34746702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the substrate contribution to the back action trapping of plasmonic nanoparticles on resonant near-field traps in plasmonic films.
    Padhy P; Zaman MA; Hansen P; Hesselink L
    Opt Express; 2017 Oct; 25(21):26198-26214. PubMed ID: 29041280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observing single protein binding by optical transmission through a double nanohole aperture in a metal film.
    Al Balushi AA; Zehtabi-Oskuie A; Gordon R
    Biomed Opt Express; 2013; 4(9):1504-11. PubMed ID: 24049672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticle transport in conical-shaped nanopores.
    Lan WJ; Holden DA; Zhang B; White HS
    Anal Chem; 2011 May; 83(10):3840-7. PubMed ID: 21495727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.