BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30074379)

  • 1. Label-Free Infrared Spectroscopy and Imaging of Single Phospholipid Bilayers with Nanoscale Resolution.
    Cernescu A; Szuwarzyński M; Kwolek U; Wydro P; Kepczynski M; Zapotoczny S; Nowakowska M; Quaroni L
    Anal Chem; 2018 Sep; 90(17):10179-10186. PubMed ID: 30074379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size-dependent ultrafast structural dynamics inside phospholipid vesicle bilayers measured with 2D IR vibrational echoes.
    Kel O; Tamimi A; Fayer MD
    Proc Natl Acad Sci U S A; 2014 Jan; 111(3):918-23. PubMed ID: 24395796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous planar phospholipid bilayer supported on porous silicon thin film reflector.
    Cunin F; Milhiet PE; Anglin E; Sailor MJ; Espenel C; Le Grimellec C; Brunel D; Devoisselle JM
    Ultramicroscopy; 2007 Oct; 107(10-11):1048-52. PubMed ID: 17600623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic interactions in phospholipid membranes revealed by coherent 2D IR spectroscopy.
    Volkov VV; Chelli R; Zhuang W; Nuti F; Takaoka Y; Papini AM; Mukamel S; Righini R
    Proc Natl Acad Sci U S A; 2007 Sep; 104(39):15323-7. PubMed ID: 17881567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy.
    Mantsch HH; McElhaney RN
    Chem Phys Lipids; 1991 Mar; 57(2-3):213-26. PubMed ID: 2054905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic force microscopy to study interacting forces in phospholipid bilayers containing general anesthetics.
    Leonenko ZV; Finot E; Cramb DT
    Methods Mol Biol; 2007; 400():601-9. PubMed ID: 17951762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing Intermolecular Interactions in Phospholipid Bilayers by Far-Infrared Spectroscopy.
    D'Angelo G; Conti Nibali V; Crupi C; Rifici S; Wanderlingh U; Paciaroni A; Sacchetti F; Branca C
    J Phys Chem B; 2017 Feb; 121(6):1204-1210. PubMed ID: 28118017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid bilayer membranes in air and water: infrared spectroscopy and neutron reflectivity studies.
    Meuse CW; Krueger S; Majkrzak CF; Dura JA; Fu J; Connor JT; Plant AL
    Biophys J; 1998 Mar; 74(3):1388-98. PubMed ID: 9512035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Super-resolution mid-infrared spectro-microscopy of biological applications through tapping mode and peak force tapping mode atomic force microscope.
    Wang H; Xie Q; Xu XG
    Adv Drug Deliv Rev; 2022 Jan; 180():114080. PubMed ID: 34906646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano-chemical infrared imaging of membrane proteins in lipid bilayers.
    Berweger S; Nguyen DM; Muller EA; Bechtel HA; Perkins TT; Raschke MB
    J Am Chem Soc; 2013 Dec; 135(49):18292-5. PubMed ID: 24251914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic Resonant Nanoantennas Induce Changes in the Shape and the Intensity of Infrared Spectra of Phospholipids.
    Omeis F; Boubegtiten-Fezoua Z; Seica AFS; Bernard R; Iqbal MH; Javahiraly N; Vergauwe RMA; Majjad H; Boulmedais F; Moss D; Hellwig P
    Molecules; 2021 Dec; 27(1):. PubMed ID: 35011296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-field scanning optical microscopy to identify membrane microdomains.
    Ianoul A; Johnston LJ
    Methods Mol Biol; 2007; 400():469-80. PubMed ID: 17951753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanomechanics of lipid bilayers by force spectroscopy with AFM: a perspective.
    Garcia-Manyes S; Sanz F
    Biochim Biophys Acta; 2010 Apr; 1798(4):741-9. PubMed ID: 20044974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orientation of fusion-active synthetic peptides in phospholipid bilayers: determination by Fourier transform infrared spectroscopy.
    Ishiguro R; Kimura N; Takahashi S
    Biochemistry; 1993 Sep; 32(37):9792-7. PubMed ID: 8373779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoroughness Strongly Impacts Lipid Mobility in Supported Membranes.
    Blachon F; Harb F; Munteanu B; Piednoir A; Fulcrand R; Charitat T; Fragneto G; Pierre-Louis O; Tinland B; Rieu JP
    Langmuir; 2017 Mar; 33(9):2444-2453. PubMed ID: 28219008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optically Active Vibrational Spectroscopy of α-Aminoisobutyric Acid Foldamers in Organic Solvents and Phospholipid Bilayers.
    Lizio MG; Andrushchenko V; Pike SJ; Peters AD; Whitehead GFS; Vitórica-Yrezábal IJ; Mutter ST; Clayden J; Bouř P; Blanch EW; Webb SJ
    Chemistry; 2018 Jul; 24(37):9399-9408. PubMed ID: 29745985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force spectroscopy reveals the effect of different ions in the nanomechanical behavior of phospholipid model membranes: the case of potassium cation.
    Redondo-Morata L; Oncins G; Sanz F
    Biophys J; 2012 Jan; 102(1):66-74. PubMed ID: 22225799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation and dynamics of supported phospholipid membranes on a periodic nanotextured substrate.
    Werner JH; Montaño GA; Garcia AL; Zurek NA; Akhadov EA; Lopez GP; Shreve AP
    Langmuir; 2009 Mar; 25(5):2986-93. PubMed ID: 19437708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrostatic stitching in gel-phase supported phospholipid bilayers.
    Zhang L; Spurlin TA; Gewirth AA; Granick S
    J Phys Chem B; 2006 Jan; 110(1):33-5. PubMed ID: 16471493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short range order of hydrocarbon chains in fluid phospholipid bilayers studied by x-ray diffraction from highly oriented membranes.
    Spaar A; Salditt T
    Biophys J; 2003 Sep; 85(3):1576-84. PubMed ID: 12944274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.