These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 30074681)
1. Synergistic Activation of Palladium Nanoparticles by Polyoxometalate-Attached Melem for Boosting Formic Acid Dehydrogenation Efficiency. Leng Y; Zhang C; Liu B; Liu M; Jiang P; Dai S ChemSusChem; 2018 Oct; 11(19):3396-3401. PubMed ID: 30074681 [TBL] [Abstract][Full Text] [Related]
2. Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon. Bi QY; Lin JD; Liu YM; He HY; Huang FQ; Cao Y Angew Chem Int Ed Engl; 2016 Sep; 55(39):11849-53. PubMed ID: 27552650 [TBL] [Abstract][Full Text] [Related]
3. Interfacing with Fe-N-C Sites Boosts the Formic Acid Dehydrogenation of Palladium Nanoparticles. Zhong S; Yang X; Chen L; Tsumori N; Taguchi N; Xu Q ACS Appl Mater Interfaces; 2021 Oct; 13(39):46749-46755. PubMed ID: 34581556 [TBL] [Abstract][Full Text] [Related]
4. Ultrasmall Pd nanoparticles supported on a metal-organic framework DUT-67-PZDC for enhanced formic acid dehydrogenation. Zhou C; Zhang R; Hu J; Yao C; Liu Z; Duan A; Wang X J Colloid Interface Sci; 2024 Nov; 673():997-1006. PubMed ID: 39002361 [TBL] [Abstract][Full Text] [Related]
5. Immobilizing Extremely Catalytically Active Palladium Nanoparticles to Carbon Nanospheres: A Weakly-Capping Growth Approach. Zhu QL; Tsumori N; Xu Q J Am Chem Soc; 2015 Sep; 137(36):11743-8. PubMed ID: 26323169 [TBL] [Abstract][Full Text] [Related]
6. Efficient hydrogen production from formic acid dehydrogenation over ultrasmall PdIr nanoparticles on amine-functionalized yolk-shell mesoporous silica. Chai H; Hu J; Zhang R; Feng Y; Li H; Liu Z; Zhou C; Wang X J Colloid Interface Sci; 2025 Jan; 678(Pt C):261-271. PubMed ID: 39298977 [TBL] [Abstract][Full Text] [Related]
7. Amine-Functionalized Carbon Bowl-Supported Pd-La(OH) Sun X; Zhang G; Yao Q; Li H; Feng G; Lu ZH Inorg Chem; 2022 Nov; 61(45):18102-18111. PubMed ID: 36325636 [TBL] [Abstract][Full Text] [Related]
8. Surfactant-Free Synthesis of Carbon-Supported Palladium Nanoparticles and Size-Dependent Hydrogen Production from Formic Acid-Formate Solution. Zhang S; Jiang B; Jiang K; Cai WB ACS Appl Mater Interfaces; 2017 Jul; 9(29):24678-24687. PubMed ID: 28658569 [TBL] [Abstract][Full Text] [Related]
9. Palladium Nanoparticles Supported on Titanium-Doped Graphitic Carbon Nitride for Formic Acid Dehydrogenation. Wu Y; Wen M; Navlani-García M; Kuwahara Y; Mori K; Yamashita H Chem Asian J; 2017 Apr; 12(8):860-867. PubMed ID: 28247487 [TBL] [Abstract][Full Text] [Related]
10. Catalytic dehydrogenation of liquid organic hydrogen carrier dodecahydro-N-ethylcarbazole over palladium catalysts supported on different supports. Feng Z; Chen X; Bai X Environ Sci Pollut Res Int; 2020 Oct; 27(29):36172-36185. PubMed ID: 32556981 [TBL] [Abstract][Full Text] [Related]
11. Decomposition of formic acid using tungsten(VI) oxide supported AgPd nanoparticles. Akbayrak S J Colloid Interface Sci; 2019 Mar; 538():682-688. PubMed ID: 30591196 [TBL] [Abstract][Full Text] [Related]
12. Yolk-shell silica dioxide spheres @ metal-organic framework immobilized Ni/Mo nanoparticles as an effective catalyst for formic acid dehydrogenation at low temperature. Prabu S; Chiang KY J Colloid Interface Sci; 2021 Dec; 604():584-595. PubMed ID: 34280756 [TBL] [Abstract][Full Text] [Related]
13. An Effective Strategy to Boost Formic Acid Dehydrogenation over Pd/AC-NH Jiang S; Shi H; Xu Y; Liu J; Yu T; Ren G ACS Appl Mater Interfaces; 2024 Oct; ():. PubMed ID: 39377117 [TBL] [Abstract][Full Text] [Related]
14. Experimental and Theoretical Studies of Ultrafine Pd-Based Biochar Catalyst for Dehydrogenation of Formic Acid and Application of In Situ Hydrogenation. Zou L; Liu Q; Zhu D; Huang Y; Mao Y; Luo X; Liang Z ACS Appl Mater Interfaces; 2022 Apr; 14(15):17282-17295. PubMed ID: 35389607 [TBL] [Abstract][Full Text] [Related]
15. A Palladium Catalyst Supported on Boron-Doped Porous Carbon for Efficient Dehydrogenation of Formic Acid. Liu H; Huang M; Tao W; Han L; Zhang J; Zhao Q Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535697 [TBL] [Abstract][Full Text] [Related]
16. In Situ Confinement of Ultrasmall Pd Clusters within Nanosized Silicalite-1 Zeolite for Highly Efficient Catalysis of Hydrogen Generation. Wang N; Sun Q; Bai R; Li X; Guo G; Yu J J Am Chem Soc; 2016 Jun; 138(24):7484-7. PubMed ID: 27248462 [TBL] [Abstract][Full Text] [Related]
17. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. Gu X; Lu ZH; Jiang HL; Akita T; Xu Q J Am Chem Soc; 2011 Aug; 133(31):11822-5. PubMed ID: 21761819 [TBL] [Abstract][Full Text] [Related]
18. Size-Dependent Catalytic Activity of Palladium Nanoparticles Fabricated in Porous Organic Polymers for Alkene Hydrogenation at Room Temperature. Mondal J; Trinh QT; Jana A; Ng WK; Borah P; Hirao H; Zhao Y ACS Appl Mater Interfaces; 2016 Jun; 8(24):15307-19. PubMed ID: 27258184 [TBL] [Abstract][Full Text] [Related]
19. Highly Efficient Dehydrogenation of Formic Acid over Binary Palladium-Phosphorous Alloy Nanoclusters on N-Doped Carbon. Zhu L; Liang Y; Sun L; Wang J; Xu D Inorg Chem; 2021 Jul; 60(14):10707-10714. PubMed ID: 34196533 [TBL] [Abstract][Full Text] [Related]