These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30074681)

  • 41. Hydrogen Generation from Additive-Free Formic Acid Decomposition Under Mild Conditions by Pd/C: Experimental and DFT Studies.
    Sanchez F; Motta D; Roldan A; Hammond C; Villa A; Dimitratos N
    Top Catal; 2018; 61(3):254-266. PubMed ID: 30956509
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Unprecedentedly high formic acid dehydrogenation activity on an iridium complex with an N,N'-diimine ligand in water.
    Wang Z; Lu SM; Li J; Wang J; Li C
    Chemistry; 2015 Sep; 21(36):12592-5. PubMed ID: 26202172
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synergistic Effect of Pendant N Moieties for Proton Shuttling in the Dehydrogenation of Formic Acid Catalyzed by Biomimetic Ir
    Wang WH; Wang H; Yang Y; Lai X; Li Y; Wang J; Himeda Y; Bao M
    ChemSusChem; 2020 Sep; 13(18):5015-5022. PubMed ID: 32662920
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Palladium Nanoparticles Supported on Nitrogen and Sulfur Dual-Doped Graphene as Highly Active Electrocatalysts for Formic Acid and Methanol Oxidation.
    Zhang X; Zhu J; Tiwary CS; Ma Z; Huang H; Zhang J; Lu Z; Huang W; Wu Y
    ACS Appl Mater Interfaces; 2016 May; 8(17):10858-65. PubMed ID: 27082661
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ultrafine PdAu nanoparticles immobilized on amine functionalized carbon black toward fast dehydrogenation of formic acid at room temperature.
    Wu L; Ni B; Chen R; Shi C; Sun P; Chen T
    Nanoscale Adv; 2019 Nov; 1(11):4415-4421. PubMed ID: 36134405
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-density defects on PdAg nanowire networks as catalytic hot spots for efficient dehydrogenation of formic acid and reduction of nitrate.
    Liu H; Yu Y; Yang W; Lei W; Gao M; Guo S
    Nanoscale; 2017 Jul; 9(27):9305-9309. PubMed ID: 28678238
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Formation of a hydrogen-bonded heptazine framework by self-assembly of melem into a hexagonal channel structure.
    Makowski SJ; Köstler P; Schnick W
    Chemistry; 2012 Mar; 18(11):3248-57. PubMed ID: 22314938
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A competitive photoelectrochemical immunosensor for the detection of diethylstilbestrol based on an Au/UiO-66(NH
    Wu T; Yan T; Zhang X; Feng Y; Wei D; Sun M; Du B; Wei Q
    Biosens Bioelectron; 2018 Oct; 117():575-582. PubMed ID: 30005376
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Heterogenized Bimetallic Pd-Pt-Fe3O4 Nanoflakes as Extremely Robust, Magnetically Recyclable Catalysts for Chemoselective Nitroarene Reduction.
    Byun S; Song Y; Kim BM
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14637-47. PubMed ID: 27191706
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Preparation of highly dispersed Pd/SBA-15 catalysts for dodecahydro-N-ethylcarbazole dehydrogenation reaction by ion exchange-glow discharge.
    Feng Z; Wang Y; Bai X
    Environ Sci Pollut Res Int; 2022 Jun; 29(26):39266-39280. PubMed ID: 35099693
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The isolation of [Pd{OC(O)H}(H)(NHC)(PR3)] (NHC = N-heterocyclic carbene) and its role in alkene and alkyne reductions using formic acid.
    Broggi J; Jurčík V; Songis O; Poater A; Cavallo L; Slawin AM; Cazin CS
    J Am Chem Soc; 2013 Mar; 135(12):4588-91. PubMed ID: 23316939
    [TBL] [Abstract][Full Text] [Related]  

  • 52. MWCNT-Supported PVP-Capped Pd Nanoparticles as Efficient Catalysts for the Dehydrogenation of Formic Acid.
    Ortega-Murcia A; Navlani-García M; Morallón E; Cazorla-Amorós D
    Front Chem; 2020; 8():359. PubMed ID: 32411676
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prefunctionalized Porous Organic Polymers: Effective Supports of Surface Palladium Nanoparticles for the Enhancement of Catalytic Performances in Dehalogenation.
    Zhong H; Liu C; Zhou H; Wang Y; Wang R
    Chemistry; 2016 Aug; 22(35):12533-41. PubMed ID: 27465930
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Towards Hydrogen Storage through an Efficient Ruthenium-Catalyzed Dehydrogenation of Formic Acid.
    Xin Z; Zhang J; Sordakis K; Beller M; Du CX; Laurenczy G; Li Y
    ChemSusChem; 2018 Jul; 11(13):2077-2082. PubMed ID: 29722204
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Octahedral palladium nanoparticles as excellent hosts for electrochemically adsorbed and absorbed hydrogen.
    Zalineeva A; Baranton S; Coutanceau C; Jerkiewicz G
    Sci Adv; 2017 Feb; 3(2):e1600542. PubMed ID: 28168217
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Polyoxometalate-supported Pd nanoparticles as efficient catalysts for the direct synthesis of hydrogen peroxide in the absence of acid or halide promoters.
    Sun M; Zhang J; Zhang Q; Wang Y; Wan H
    Chem Commun (Camb); 2009 Sep; (34):5174-6. PubMed ID: 20448984
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Surface Engineering of a Supported PdAg Catalyst for Hydrogenation of CO
    Mori K; Sano T; Kobayashi H; Yamashita H
    J Am Chem Soc; 2018 Jul; 140(28):8902-8909. PubMed ID: 29932642
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced dechlorination of m-DCB using iron@graphite/palladium (Fe@C/Pd) nanoparticles produced by pulsed laser ablation in liquid.
    Yu Y; Jung HJ; Je M; Choi HC; Choi MY
    Chemosphere; 2016 Jul; 155():250-256. PubMed ID: 27129061
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Size-Dependent Catalytic Activity of Monodispersed Nickel Nanoparticles for the Hydrolytic Dehydrogenation of Ammonia Borane.
    Guo K; Li H; Yu Z
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):517-525. PubMed ID: 29243479
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mercaptoundecanoic acid capped palladium nanoparticles in a SAPO 34 membrane: a solution for enhancement of H₂/CO₂ separation efficiency.
    Das JK; Das N
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20717-28. PubMed ID: 25353317
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.