These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30074814)

  • 1. Bioactive Tape With BMP-2 Binding Peptides Captures Endogenous Growth Factors and Accelerates Healing After Anterior Cruciate Ligament Reconstruction.
    Crispim JF; Fu SC; Lee YW; Fernandes HAM; Jonkheijm P; Yung PSH; Saris DBF
    Am J Sports Med; 2018 Oct; 46(12):2905-2914. PubMed ID: 30074814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of Graft Pretensioning on Bone Tunnel Diameter and Bone Formation After Anterior Cruciate Ligament Reconstruction in a Rat Model: Evaluation With Micro-Computed Tomography.
    Zong JC; Ma R; Wang H; Cong GT; Lebaschi A; Deng XH; Rodeo SA
    Am J Sports Med; 2017 May; 45(6):1349-1358. PubMed ID: 28298055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sustained BMP-2 release and platelet rich fibrin synergistically promote tendon-bone healing after anterior cruciate ligament reconstruction in rat.
    Han L; Hu YG; Jin B; Xu SC; Zheng X; Fang WL
    Eur Rev Med Pharmacol Sci; 2019 Oct; 23(20):8705-8712. PubMed ID: 31696456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anterior Cruciate Ligament-Derived Stem Cells Transduced With BMP2 Accelerate Graft-Bone Integration After ACL Reconstruction.
    Kawakami Y; Takayama K; Matsumoto T; Tang Y; Wang B; Mifune Y; Cummins JH; Warth RJ; Kuroda R; Kurosaka M; Fu FH; Huard J
    Am J Sports Med; 2017 Mar; 45(3):584-597. PubMed ID: 27903590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporating BMP-2 and skeletal muscle to a semitendinosus autograft in an oversized tunnel yields robust bone tunnel ossification in rabbits: Toward single-step revision of failed anterior cruciate ligament reconstruction.
    Germann M; Snedeker JG; Stalder M; Nuss KM; Meyer DC; Farshad M
    Knee; 2018 Oct; 25(5):765-773. PubMed ID: 30057249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acceleration of tendon-bone healing of anterior cruciate ligament graft using autologous ruptured tissue.
    Matsumoto T; Kubo S; Sasaki K; Kawakami Y; Oka S; Sasaki H; Takayama K; Tei K; Matsushita T; Mifune Y; Kurosaka M; Kuroda R
    Am J Sports Med; 2012 Jun; 40(6):1296-302. PubMed ID: 22427618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the Injury-to-Surgery Interval on the Healing Potential of Human Anterior Cruciate Ligament-Derived Cells.
    Inokuchi T; Matsumoto T; Takayama K; Nakano N; Zhang S; Araki D; Matsushita T; Kuroda R
    Am J Sports Med; 2017 May; 45(6):1359-1369. PubMed ID: 28282242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Dynamic Changes in Anterior Cruciate Ligament In Situ Graft Force on the Biological Healing Response of the Graft-Tunnel Interface.
    Ma R; Schär M; Chen T; Sisto M; Nguyen J; Voigt C; Deng XH; Rodeo SA
    Am J Sports Med; 2018 Mar; 46(4):915-923. PubMed ID: 29298079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TGF-β1 activation in human hamstring cells through growth factor binding peptides on polycaprolactone surfaces.
    Crispim J; Fernandes HAM; Fu SC; Lee YW; Jonkheijm P; Saris DBF
    Acta Biomater; 2017 Apr; 53():165-178. PubMed ID: 28132919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An osteogenesis/angiogenesis-stimulation artificial ligament for anterior cruciate ligament reconstruction.
    Li H; Li J; Jiang J; Lv F; Chang J; Chen S; Wu C
    Acta Biomater; 2017 May; 54():399-410. PubMed ID: 28315493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-purity magnesium interference screws promote fibrocartilaginous entheses regeneration in the anterior cruciate ligament reconstruction rabbit model via accumulation of BMP-2 and VEGF.
    Cheng P; Han P; Zhao C; Zhang S; Wu H; Ni J; Hou P; Zhang Y; Liu J; Xu H; Liu S; Zhang X; Zheng Y; Chai Y
    Biomaterials; 2016 Mar; 81():14-26. PubMed ID: 26713681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is Remnant Preservation Truly Beneficial to Anterior Cruciate Ligament Reconstruction Healing? Clinical and Magnetic Resonance Imaging Evaluations of Remnant-Preserved Reconstruction.
    Naraoka T; Kimura Y; Tsuda E; Yamamoto Y; Ishibashi Y
    Am J Sports Med; 2017 Apr; 45(5):1049-1058. PubMed ID: 28135427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Influence of Ruptured Scar Pattern on the Healing Potential of Anterior Cruciate Ligament Remnant Cells.
    Kirizuki S; Matsumoto T; Ueha T; Uefuji A; Inokuchi T; Takayama K; Hashimoto S; Hayashi S; Matsushita T; Kuroda R
    Am J Sports Med; 2018 May; 46(6):1382-1388. PubMed ID: 29505728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-dependent healing potential of anterior cruciate ligament remnant-derived cells.
    Nakano N; Matsumoto T; Takayama K; Matsushita T; Araki D; Uefuji A; Nagai K; Zhang S; Inokuchi T; Nishida K; Kuroda R; Kurosaka M
    Am J Sports Med; 2015 Mar; 43(3):700-8. PubMed ID: 25556219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. No difference in graft healing or clinical outcome between trans-portal and outside-in techniques after anterior cruciate ligament reconstruction.
    Sim JA; Kim JM; Lee S; Song EK; Seon JK
    Knee Surg Sports Traumatol Arthrosc; 2018 Aug; 26(8):2338-2344. PubMed ID: 28756467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variations in Knee Kinematics After ACL Injury and After Reconstruction Are Correlated With Bone Shape Differences.
    Lansdown DA; Pedoia V; Zaid M; Amano K; Souza RB; Li X; Ma CB
    Clin Orthop Relat Res; 2017 Oct; 475(10):2427-2435. PubMed ID: 28451863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Changing the Joint Kinematics of Knees With a Ruptured Anterior Cruciate Ligament on the Molecular Biological Responses and Spontaneous Healing in a Rat Model.
    Kokubun T; Kanemura N; Murata K; Moriyama H; Morita S; Jinno T; Ihara H; Takayanagi K
    Am J Sports Med; 2016 Nov; 44(11):2900-2910. PubMed ID: 27507845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grafted tendon healing in femoral and tibial tunnels after anterior cruciate ligament reconstruction.
    Nakase J; Kitaoka K; Toratani T; Kosaka M; Ohashi Y; Tsuchiya H
    J Orthop Surg (Hong Kong); 2014 Apr; 22(1):65-9. PubMed ID: 24781617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a bioengineered ACL matrix's osteointegration with BMP-2 supplementation.
    Mengsteab PY; Conroy P; Badon M; Otsuka T; Kan HM; Vella AT; Nair LS; Laurencin CT
    PLoS One; 2020; 15(1):e0227181. PubMed ID: 31910231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficacy and Safety of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells in Anterior Cruciate Ligament Reconstruction of a Rabbit Model: New Strategy to Enhance Tendon Graft Healing.
    Jang KM; Lim HC; Jung WY; Moon SW; Wang JH
    Arthroscopy; 2015 Aug; 31(8):1530-9. PubMed ID: 25882182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.