These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 30075055)

  • 1. Experimental evolution demonstrates evolvability of preferential nutrient allocation to competing traits in response to chronic malnutrition.
    Vijendravarma RK
    J Evol Biol; 2018 Nov; 31(11):1743-1749. PubMed ID: 30075055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life-history consequences of adaptation to larval nutritional stress in Drosophila.
    Kolss M; Vijendravarma RK; Schwaller G; Kawecki TJ
    Evolution; 2009 Sep; 63(9):2389-401. PubMed ID: 19473389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature dependent larval resource allocation shaping adult body size in Drosophila melanogaster.
    Bochdanovits Z; De Jong G
    J Evol Biol; 2003 Nov; 16(6):1159-67. PubMed ID: 14640407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing the impacts of macronutrients on life-history traits in larval and adult
    Jang T; Lee KP
    J Exp Biol; 2018 Oct; 221(Pt 21):. PubMed ID: 30171098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drosophila melanogaster larvae make nutritional choices that minimize developmental time.
    Rodrigues MA; Martins NE; Balancé LF; Broom LN; Dias AJ; Fernandes AS; Rodrigues F; Sucena É; Mirth CK
    J Insect Physiol; 2015 Oct; 81():69-80. PubMed ID: 26149766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental evolution in Drosophila melanogaster: interaction of temperature and food quality selection regimes.
    Bochdanovits Z; de Jong G
    Evolution; 2003 Aug; 57(8):1829-36. PubMed ID: 14503624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic malnutrition favours smaller critical size for metamorphosis initiation in Drosophila melanogaster.
    Vijendravarma RK; Narasimha S; Kawecki TJ
    J Evol Biol; 2012 Feb; 25(2):288-92. PubMed ID: 22122120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlated responses to selection for faster development and early reproduction in Drosophila: the evolution of larval traits.
    Prasad NG; Shakarad M; Anitha D; Rajamani M; Joshi A
    Evolution; 2001 Jul; 55(7):1363-72. PubMed ID: 11525460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gut physiology mediates a trade-off between adaptation to malnutrition and susceptibility to food-borne pathogens.
    Vijendravarma RK; Narasimha S; Chakrabarti S; Babin A; Kolly S; Lemaitre B; Kawecki TJ
    Ecol Lett; 2015 Oct; 18(10):1078-86. PubMed ID: 26249109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Idiosyncratic evolution of maternal effects in response to juvenile malnutrition in Drosophila.
    Vijendravarma RK; Kawecki TJ
    J Evol Biol; 2015 Apr; 28(4):876-84. PubMed ID: 25716891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of increased larval competitive ability in Drosophila melanogaster without increased larval feeding rate.
    Sarangi M; Nagarajan A; Dey S; Bose J; Joshi A
    J Genet; 2016 Sep; 95(3):491-503. PubMed ID: 27659320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptation to Chronic Nutritional Stress Leads to Reduced Dependence on Microbiota in
    Erkosar B; Kolly S; van der Meer JR; Kawecki TJ
    mBio; 2017 Oct; 8(5):. PubMed ID: 29066546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Genomic Architecture of Adaptation to Larval Malnutrition Points to a Trade-off with Adult Starvation Resistance in Drosophila.
    Kawecki TJ; Erkosar B; Dupuis C; Hollis B; Stillwell RC; Kapun M
    Mol Biol Evol; 2021 Jun; 38(7):2732-2749. PubMed ID: 33677563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plastic and evolutionary responses of cell size and number to larval malnutrition in Drosophila melanogaster.
    Vijendravarma RK; Narasimha S; Kawecki TJ
    J Evol Biol; 2011 Apr; 24(4):897-903. PubMed ID: 21276112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental evolution of post-ingestive nutritional compensation in response to a nutrient-poor diet.
    Cavigliasso F; Dupuis C; Savary L; Spangenberg JE; Kawecki TJ
    Proc Biol Sci; 2020 Dec; 287(1940):20202684. PubMed ID: 33259760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trade-off of ovarian lipids and total body lipids for fecundity and starvation resistance in tropical populations of Drosophila melanogaster.
    Kalra B; Parkash R
    J Evol Biol; 2014 Nov; 27(11):2371-85. PubMed ID: 25223796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of increased adult longevity in Drosophila melanogaster populations selected for adaptation to larval crowding.
    Shenoi VN; Ali SZ; Prasad NG
    J Evol Biol; 2016 Feb; 29(2):407-17. PubMed ID: 26575793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of reproductive traits have no apparent life-history associated cost in populations of Drosophila melanogaster selected for cold shock resistance.
    Singh K; Kochar E; Gahlot P; Bhatt K; Prasad NG
    BMC Ecol Evol; 2021 Dec; 21(1):219. PubMed ID: 34872492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fruit flies may face a nutrient-dependent life-history trade-off between secondary sexual trait quality, survival and developmental rate.
    Gray LJ; Simpson SJ; Polak M
    J Insect Physiol; 2018 Jan; 104():60-70. PubMed ID: 29203178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of Drosophila resistance against different pathogens and infection routes entails no detectable maintenance costs.
    Faria VG; Martins NE; Paulo T; Teixeira L; Sucena É; Magalhães S
    Evolution; 2015 Nov; 69(11):2799-809. PubMed ID: 26496003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.