These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30075070)

  • 1. Anomalous Effects of Velocity Rescaling Algorithms: The Flying Ice Cube Effect Revisited.
    Braun E; Moosavi SM; Smit B
    J Chem Theory Comput; 2018 Oct; 14(10):5262-5272. PubMed ID: 30075070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Addressing Dynamics at Catalytic Heterogeneous Interfaces with DFT-MD: Anomalous Temperature Distributions from Commonly Used Thermostats.
    Korpelin V; Kiljunen T; Melander MM; Caro MA; Kristoffersen HH; Mammen N; Apaja V; Honkala K
    J Phys Chem Lett; 2022 Mar; 13(11):2644-2652. PubMed ID: 35297635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Temperature Control Algorithms on Transport Properties and Kinetics in Molecular Dynamics Simulations.
    Basconi JE; Shirts MR
    J Chem Theory Comput; 2013 Jul; 9(7):2887-99. PubMed ID: 26583973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Violation of the virial theorem and generalized equipartition theorem for logarithmic oscillators serving as a thermostat.
    Chen K; He D; Zhao H
    Sci Rep; 2017 Jun; 7(1):3460. PubMed ID: 28615728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the influence of thermostat configurations on the mechanical properties of carbon nanotubes in molecular dynamics simulations.
    Heo S; Sinnott SB
    J Nanosci Nanotechnol; 2007; 7(4-5):1518-24. PubMed ID: 17450920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Further cautionary tales on thermostatting in molecular dynamics: Energy equipartitioning and non-equilibrium processes in gas-phase simulations.
    Halonen R; Neefjes I; Reischl B
    J Chem Phys; 2023 May; 158(19):. PubMed ID: 37184012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implementations of Nosé-Hoover and Nosé-Poincaré thermostats in mesoscopic dynamic simulations with the united-residue model of a polypeptide chain.
    Kleinerman DS; Czaplewski C; Liwo A; Scheraga HA
    J Chem Phys; 2008 Jun; 128(24):245103. PubMed ID: 18601387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulations of proteins with inhomogeneous degrees of freedom: The effect of thermostats.
    Mor A; Ziv G; Levy Y
    J Comput Chem; 2008 Sep; 29(12):1992-8. PubMed ID: 18366022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Molecular Dynamics Thermostats on Descriptions of Chemical Nonequilibrium.
    Page AJ; Isomoto T; Knaup JM; Irle S; Morokuma K
    J Chem Theory Comput; 2012 Nov; 8(11):4019-28. PubMed ID: 26605569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study on methodology in molecular dynamics simulation of nucleation.
    Julin J; Napari I; Vehkamäki H
    J Chem Phys; 2007 Jun; 126(22):224517. PubMed ID: 17581073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermostat artifacts in replica exchange molecular dynamics simulations.
    Rosta E; Buchete NV; Hummer G
    J Chem Theory Comput; 2009; 5(5):1393-1399. PubMed ID: 20046980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Canonical sampling through velocity rescaling.
    Bussi G; Donadio D; Parrinello M
    J Chem Phys; 2007 Jan; 126(1):014101. PubMed ID: 17212484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the use of a weak-coupling thermostat in replica-exchange molecular dynamics simulations.
    Lin Z; van Gunsteren WF
    J Chem Phys; 2015 Jul; 143(3):034110. PubMed ID: 26203017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equipartition and the Calculation of Temperature in Biomolecular Simulations.
    Eastwood MP; Stafford KA; Lippert RA; Jensen MØ; Maragakis P; Predescu C; Dror RO; Shaw DE
    J Chem Theory Comput; 2010 Jul; 6(7):2045-58. PubMed ID: 26615934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proper Thermal Equilibration of Simulations with Drude Polarizable Models: Temperature-Grouped Dual-Nosé-Hoover Thermostat.
    Son CY; McDaniel JG; Cui Q; Yethiraj A
    J Phys Chem Lett; 2019 Dec; 10(23):7523-7530. PubMed ID: 31722528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New observations regarding deterministic, time-reversible thermostats and Gauss's principle of least constraint.
    Bright JN; Evans DJ; Searles DJ
    J Chem Phys; 2005 May; 122(19):194106. PubMed ID: 16161562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the thermostat in the molecular dynamics simulation on the folding of the model protein chignolin.
    Fuzo CA; Degrève L
    J Mol Model; 2012 Jun; 18(6):2785-94. PubMed ID: 22116608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conserving the linear momentum in stochastic dynamics: Dissipative particle dynamics as a general strategy to achieve local thermostatization in molecular dynamics simulations.
    Passler PP; Hofer TS
    J Comput Chem; 2017 Feb; 38(5):265-275. PubMed ID: 27888515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the calculation of velocity-dependent properties in molecular dynamics simulations using the leapfrog integration algorithm.
    Cuendet MA; van Gunsteren WF
    J Chem Phys; 2007 Nov; 127(18):184102. PubMed ID: 18020625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isothermal-isobaric molecular dynamics using stochastic velocity rescaling.
    Bussi G; Zykova-Timan T; Parrinello M
    J Chem Phys; 2009 Feb; 130(7):074101. PubMed ID: 19239278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.