These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 30075321)
1. Incorporation of fast dissolving glucose porogens and poly(lactic-co-glycolic acid) microparticles within calcium phosphate cements for bone tissue regeneration. Smith BT; Lu A; Watson E; Santoro M; Melchiorri AJ; Grosfeld EC; van den Beucken JJJP; Jansen JA; Scott DW; Fisher JP; Mikos AG Acta Biomater; 2018 Sep; 78():341-350. PubMed ID: 30075321 [TBL] [Abstract][Full Text] [Related]
2. Incorporation of fast dissolving glucose porogens into an injectable calcium phosphate cement for bone tissue engineering. Smith BT; Santoro M; Grosfeld EC; Shah SR; van den Beucken JJJP; Jansen JA; Mikos AG Acta Biomater; 2017 Mar; 50():68-77. PubMed ID: 27956363 [TBL] [Abstract][Full Text] [Related]
3. Fast dissolving glucose porogens for early calcium phosphate cement degradation and bone regeneration. Grosfeld EC; Smith BT; Santoro M; Lodoso-Torrecilla I; Jansen JA; Ulrich DJ; Melchiorri AJ; Scott DW; Mikos AG; van den Beucken JJJP Biomed Mater; 2020 Feb; 15(2):025002. PubMed ID: 31810074 [TBL] [Abstract][Full Text] [Related]
4. Multimodal pore formation in calcium phosphate cements. Lodoso-Torrecilla I; van Gestel NAP; Diaz-Gomez L; Grosfeld EC; Laperre K; Wolke JGC; Smith BT; Arts JJ; Mikos AG; Jansen JA; Hofmann S; van den Beucken JJJP J Biomed Mater Res A; 2018 Feb; 106(2):500-509. PubMed ID: 28940662 [TBL] [Abstract][Full Text] [Related]
6. Toward accelerated bone regeneration by altering poly(D,L-lactic-co-glycolic) acid porogen content in calcium phosphate cement. van Houdt CI; Preethanath RS; van Oirschot BA; Zwarts PH; Ulrich DJ; Anil S; Jansen JA; van den Beucken JJ J Biomed Mater Res A; 2016 Feb; 104(2):483-92. PubMed ID: 26454146 [TBL] [Abstract][Full Text] [Related]
7. Tuning the degradation rate of calcium phosphate cements by incorporating mixtures of polylactic-co-glycolic acid microspheres and glucono-delta-lactone microparticles. Sariibrahimoglu K; An J; van Oirschot BA; Nijhuis AW; Eman RM; Alblas J; Wolke JG; van den Beucken JJ; Leeuwenburgh SC; Jansen JA Tissue Eng Part A; 2014 Nov; 20(21-22):2870-82. PubMed ID: 24819744 [TBL] [Abstract][Full Text] [Related]
8. In vitro degradation rate of apatitic calcium phosphate cement with incorporated PLGA microspheres. Félix Lanao RP; Leeuwenburgh SC; Wolke JG; Jansen JA Acta Biomater; 2011 Sep; 7(9):3459-68. PubMed ID: 21689794 [TBL] [Abstract][Full Text] [Related]
9. Sterilization effects on the handling and degradation properties of calcium phosphate cements containing poly ( Kucko NW; Li W; García Martinez MA; Rehman IU; Ulset AT; Christensen BE; Leeuwenburgh SCG; Herber RP J Biomed Mater Res B Appl Biomater; 2019 Oct; 107(7):2216-2228. PubMed ID: 30706677 [TBL] [Abstract][Full Text] [Related]
10. Novel Strategy to Accelerate Bone Regeneration of Calcium Phosphate Cement by Incorporating 3D Plotted Poly(lactic-co-glycolic acid) Network and Bioactive Wollastonite. Qian G; Fan P; He F; Ye J Adv Healthc Mater; 2019 May; 8(9):e1801325. PubMed ID: 30901163 [TBL] [Abstract][Full Text] [Related]
11. Multimodal porogen platforms for calcium phosphate cement degradation. Lodoso-Torrecilla I; Grosfeld EC; Marra A; Smith BT; Mikos AG; Ulrich DJ; Jansen JA; van den Beucken JJ J Biomed Mater Res A; 2019 Aug; 107(8):1713-1722. PubMed ID: 30920119 [TBL] [Abstract][Full Text] [Related]
12. Alginate/poly (lactic-co-glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering. Qi X; Ye J; Wang Y J Biomed Mater Res A; 2009 Jun; 89(4):980-7. PubMed ID: 18470921 [TBL] [Abstract][Full Text] [Related]
13. Porous calcium phosphate-poly (lactic-co-glycolic) acid composite bone cement: A viable tunable drug delivery system. Roy A; Jhunjhunwala S; Bayer E; Fedorchak M; Little SR; Kumta PN Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():92-101. PubMed ID: 26652353 [TBL] [Abstract][Full Text] [Related]
15. [An experimental study on a slow-release complex with rifampicin-polylactic-co-glycolic acid-calcium phosphate cement]. Wu J; Ding Z; Lei Q; Li M; Liang Y; Lu T Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2016 Sep; 41(9):946-54. PubMed ID: 27640793 [TBL] [Abstract][Full Text] [Related]
16. Accelerated calcium phosphate cement degradation due to incorporation of glucono-delta-lactone microparticles. Félix Lanao RP; Sariibrahimoglu K; Wang H; Wolke JG; Jansen JA; Leeuwenburgh SC Tissue Eng Part A; 2014 Jan; 20(1-2):378-88. PubMed ID: 24041246 [TBL] [Abstract][Full Text] [Related]
17. In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure. He F; Ye J J Biomed Mater Res A; 2012 Dec; 100(12):3239-50. PubMed ID: 22733543 [TBL] [Abstract][Full Text] [Related]
18. Three different strategies to obtain porous calcium phosphate cements: comparison of performance in a rat skull bone augmentation model. Klijn RJ; van den Beucken JJ; Félix Lanao RP; Veldhuis G; Leeuwenburgh SC; Wolke JG; Meijer GJ; Jansen JA Tissue Eng Part A; 2012 Jun; 18(11-12):1171-82. PubMed ID: 22292519 [TBL] [Abstract][Full Text] [Related]