These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Fabrication and evaluation of a nerve guidance conduit capable of Ca Zargar Kharazi A; Dini G; Naser R J Biomed Mater Res A; 2018 Aug; 106(8):2181-2189. PubMed ID: 29637737 [TBL] [Abstract][Full Text] [Related]
4. Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Sundback CA; Shyu JY; Wang Y; Faquin WC; Langer RS; Vacanti JP; Hadlock TA Biomaterials; 2005 Sep; 26(27):5454-64. PubMed ID: 15860202 [TBL] [Abstract][Full Text] [Related]
5. Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone. Zaky SH; Lee KW; Gao J; Jensen A; Verdelis K; Wang Y; Almarza AJ; Sfeir C Acta Biomater; 2017 May; 54():95-106. PubMed ID: 28110067 [TBL] [Abstract][Full Text] [Related]
7. Hierarchically structured nerve guidance channels based on poly-3-hydroxybutyrate enhance oriented axonal outgrowth. Hinüber C; Chwalek K; Pan-Montojo FJ; Nitschke M; Vogel R; Brünig H; Heinrich G; Werner C Acta Biomater; 2014 May; 10(5):2086-95. PubMed ID: 24406197 [TBL] [Abstract][Full Text] [Related]
8. Molecularly engineered metal-based bioactive soft materials - Neuroactive magnesium ion/polymer hybrids. Sun L; Wang M; Chen S; Sun B; Guo Y; He C; Mo X; Zhu B; You Z Acta Biomater; 2019 Feb; 85():310-319. PubMed ID: 30586648 [TBL] [Abstract][Full Text] [Related]
9. Trimethylene carbonate-caprolactone conduit with poly-p-dioxanone microfilaments to promote regeneration after spinal cord injury. Novikova LN; Kolar MK; Kingham PJ; Ullrich A; Oberhoffner S; Renardy M; Doser M; Müller E; Wiberg M; Novikov LN Acta Biomater; 2018 Jan; 66():177-191. PubMed ID: 29174588 [TBL] [Abstract][Full Text] [Related]
10. Biodegradable Nerve Guidance Conduit with Microporous and Micropatterned Poly(lactic-co-glycolic acid)-Accelerated Sciatic Nerve Regeneration. Kim SM; Lee MS; Jeon J; Lee DH; Yang K; Cho SW; Han I; Yang HS Macromol Biosci; 2018 Dec; 18(12):e1800290. PubMed ID: 30407714 [TBL] [Abstract][Full Text] [Related]
11. The mechanical characteristics and in vitro biocompatibility of poly(glycerol sebacate)-bioglass elastomeric composites. Liang SL; Cook WD; Thouas GA; Chen QZ Biomaterials; 2010 Nov; 31(33):8516-29. PubMed ID: 20739061 [TBL] [Abstract][Full Text] [Related]
12. Synthetic bioresorbable poly-α-hydroxyesters as peripheral nerve guidance conduits; a review of material properties, design strategies and their efficacy to date. Duffy P; McMahon S; Wang X; Keaveney S; O'Cearbhaill ED; Quintana I; Rodríguez FJ; Wang W Biomater Sci; 2019 Nov; 7(12):4912-4943. PubMed ID: 31576820 [TBL] [Abstract][Full Text] [Related]
13. A poly(glycerol sebacate) based photo/thermo dual curable biodegradable and biocompatible polymer for biomedical applications. Wang M; Lei D; Liu Z; Chen S; Sun L; Lv Z; Huang P; Jiang Z; You Z J Biomater Sci Polym Ed; 2017 Oct; 28(15):1728-1739. PubMed ID: 28657862 [TBL] [Abstract][Full Text] [Related]
14. Use of cyclic strain bioreactor for the upregulation of key tenocyte gene expression on Poly(glycerol-sebacate) (PGS) sheets. Deniz P; Guler S; Çelik E; Hosseinian P; Aydin HM Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110293. PubMed ID: 31753347 [TBL] [Abstract][Full Text] [Related]
15. A new nerve guide conduit material composed of a biodegradable poly(phosphoester). Wang S; Wan AC; Xu X; Gao S; Mao HQ; Leong KW; Yu H Biomaterials; 2001 May; 22(10):1157-69. PubMed ID: 11352095 [TBL] [Abstract][Full Text] [Related]
16. Biodegradable polyurethane nerve guide conduits with different moduli influence axon regeneration in transected peripheral nerve injury. Wang Y; Liang R; Lin J; Chen J; Zhang Q; Li J; Wang M; Hui X; Tan H; Fu Q J Mater Chem B; 2021 Oct; 9(38):7979-7990. PubMed ID: 34612287 [TBL] [Abstract][Full Text] [Related]
17. Electric field stimulation through a biodegradable polypyrrole-co-polycaprolactone substrate enhances neural cell growth. Nguyen HT; Sapp S; Wei C; Chow JK; Nguyen A; Coursen J; Luebben S; Chang E; Ross R; Schmidt CE J Biomed Mater Res A; 2014 Aug; 102(8):2554-64. PubMed ID: 23964001 [TBL] [Abstract][Full Text] [Related]
18. Tissue-engineered spiral nerve guidance conduit for peripheral nerve regeneration. Chang W; Shah MB; Lee P; Yu X Acta Biomater; 2018 Jun; 73():302-311. PubMed ID: 29702292 [TBL] [Abstract][Full Text] [Related]
19. Porous nerve guidance conduits reinforced with braided composite structures of silk/magnesium filaments for peripheral nerve repair. Zhang S; Wang J; Zheng Z; Yan J; Zhang L; Li Y; Zhang J; Li G; Wang X; Kaplan D Acta Biomater; 2021 Oct; 134():116-130. PubMed ID: 34289421 [TBL] [Abstract][Full Text] [Related]
20. Orientated Guidance of Peripheral Nerve Regeneration Using Conduits with a Microtube Array Sheet (MTAS). Wang Y; Wang W; Wo Y; Gui T; Zhu H; Mo X; Chen CC; Li Q; Ding W ACS Appl Mater Interfaces; 2015 Apr; 7(16):8437-50. PubMed ID: 25853547 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]