BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 30075332)

  • 1. Modeling and analysis of bench-scale pyrolysis of lignocellulosic biomass based on merge thickness.
    Ding Y; Zhou R; Wang C; Lu K; Lu S
    Bioresour Technol; 2018 Nov; 268():77-80. PubMed ID: 30075332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal.
    Wu Z; Wang S; Zhao J; Chen L; Meng H
    Bioresour Technol; 2014 Oct; 169():220-228. PubMed ID: 25058297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model.
    Chen T; Zhang J; Wu J
    Bioresour Technol; 2016 Jul; 211():502-8. PubMed ID: 27035484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal behavior and kinetic study for co-pyrolysis of lignocellulosic biomass with polyethylene over Cobalt modified ZSM-5 catalyst by thermogravimetric analysis.
    Xiang Z; Liang J; Morgan HM; Liu Y; Mao H; Bu Q
    Bioresour Technol; 2018 Jan; 247():804-811. PubMed ID: 30060416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic reaction mechanism of lignocellulosic biomass oxidative pyrolysis based on combined kinetics.
    Zhong Y; Zhou T; Wei S; Tang Z; Li C; Ding Y
    J Environ Manage; 2024 Feb; 352():120055. PubMed ID: 38184868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis.
    Sanchez-Silva L; López-González D; Villaseñor J; Sánchez P; Valverde JL
    Bioresour Technol; 2012 Apr; 109():163-72. PubMed ID: 22297048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis.
    Chen Z; Hu M; Zhu X; Guo D; Liu S; Hu Z; Xiao B; Wang J; Laghari M
    Bioresour Technol; 2015 Sep; 192():441-50. PubMed ID: 26080101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermochemical conversion of biomass in smouldering combustion across scales: The roles of heterogeneous kinetics, oxygen and transport phenomena.
    Huang X; Rein G
    Bioresour Technol; 2016 May; 207():409-21. PubMed ID: 26901090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium-catalyzed pyrolysis of lignocellulosic biomass components.
    Case PA; Truong C; Wheeler MC; DeSisto WJ
    Bioresour Technol; 2015 Sep; 192():247-52. PubMed ID: 26038329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative investigation into the formation behaviors of char, liquids and gases during pyrolysis of pinewood and lignocellulosic components.
    Shi X; Wang J
    Bioresour Technol; 2014 Oct; 170():262-269. PubMed ID: 25151069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: comparison of N₂ and CO₂ atmosphere.
    Zhang J; Chen T; Wu J; Wu J
    Bioresour Technol; 2014 Aug; 166():87-95. PubMed ID: 24907567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of biopretreatment on thermogravimetric and chemical characteristics of corn stover by different white-rot fungi.
    Yang X; Zeng Y; Ma F; Zhang X; Yu H
    Bioresour Technol; 2010 Jul; 101(14):5475-9. PubMed ID: 20207135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative Insights into the Fast Pyrolysis of Extracted Cellulose, Hemicelluloses, and Lignin.
    Carrier M; Windt M; Ziegler B; Appelt J; Saake B; Meier D; Bridgwater A
    ChemSusChem; 2017 Aug; 10(16):3212-3224. PubMed ID: 28644517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic compensation effect in logistic distributed activation energy model for lignocellulosic biomass pyrolysis.
    Xu D; Chai M; Dong Z; Rahman MM; Yu X; Cai J
    Bioresour Technol; 2018 Oct; 265():139-145. PubMed ID: 29890438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between lignin and cellulose during the pyrolysis process.
    Zhu J; Du C
    Int J Biol Macromol; 2024 Apr; 265(Pt 2):131093. PubMed ID: 38521306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between thermal behaviour of lignocellulosic components and properties of biomass.
    Pang CH; Gaddipatti S; Tucker G; Lester E; Wu T
    Bioresour Technol; 2014 Nov; 172():312-320. PubMed ID: 25277259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lignocellulosic biomass-based pyrolysis: A comprehensive review.
    K N Y; T PD; P S; S K; R YK; Varjani S; AdishKumar S; Kumar G; J RB
    Chemosphere; 2022 Jan; 286(Pt 2):131824. PubMed ID: 34388872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gasification kinetic analysis of the three pseudocomponents of biomass-cellulose, semicellulose and lignin.
    Chen T; Wu J; Zhang J; Wu J; Sun L
    Bioresour Technol; 2014 Feb; 153():223-9. PubMed ID: 24365743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics.
    Wang X; Hu M; Hu W; Chen Z; Liu S; Hu Z; Xiao B
    Bioresour Technol; 2016 Nov; 219():510-520. PubMed ID: 27521788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of autocatalytic kinetics to obtain composition of lignocellulosic materials.
    Barneto AG; Carmona JA; Alfonso JE; Alcaide LJ
    Bioresour Technol; 2009 Sep; 100(17):3963-73. PubMed ID: 19369063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.