These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 30075332)

  • 21. Thermal decomposition of castor oil, corn starch, soy protein, lignin, xylan, and cellulose during fast pyrolysis.
    Qiao Y; Wang B; Ji Y; Xu F; Zong P; Zhang J; Tian Y
    Bioresour Technol; 2019 Apr; 278():287-295. PubMed ID: 30708332
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Online photoionization mass spectrometric evaluation of catalytic co-pyrolysis of cellulose and polyethylene over HZSM-5.
    Zhou Z; Chen X; Wang Y; Liu C; Ma H; Zhou C; Qi F; Yang J
    Bioresour Technol; 2019 Mar; 275():130-137. PubMed ID: 30580234
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of potassium on the pyrolysis of biomass components: Pyrolysis behaviors, product distribution and kinetic characteristics.
    Fan H; Gu J; Wang Y; Yuan H; Chen Y; Luo B
    Waste Manag; 2021 Feb; 121():255-264. PubMed ID: 33388648
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic study and pyrolysis characteristics of algal and lignocellulosic biomasses.
    Vasudev V; Ku X; Lin J
    Bioresour Technol; 2019 Sep; 288():121496. PubMed ID: 31128538
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Non-isothermal pyrolysis characteristics of giant sensitive plants using thermogravimetric analysis.
    Wongsiriamnuay T; Tippayawong N
    Bioresour Technol; 2010 Jul; 101(14):5638-44. PubMed ID: 20189804
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of the degradation products of lignocellulosic biomass by using tandem mass spectrometry experiments, model compounds, and quantum chemical calculations.
    Guthrie JD; Rowell CER; Anyaeche RO; Alzarieni KZ; Kenttämaa HI
    Mass Spectrom Rev; 2024; 43(2):369-408. PubMed ID: 36727592
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of kinetic parameters of Phlomis bovei de Noé using thermogravimetric analysis.
    Yahiaoui M; Hadoun H; Toumert I; Hassani A
    Bioresour Technol; 2015 Nov; 196():441-7. PubMed ID: 26276095
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative pyrolysis behaviors of stalk, wood and shell biomass: Correlation of cellulose crystallinity and reaction kinetics.
    Chen H; Liu Z; Chen X; Chen Y; Dong Z; Wang X; Yang H
    Bioresour Technol; 2020 Aug; 310():123498. PubMed ID: 32422556
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of Potassium on the Mechanisms of Biomass Pyrolysis Studied using Complementary Analytical Techniques.
    Le Brech Y; Ghislain T; Leclerc S; Bouroukba M; Delmotte L; Brosse N; Snape C; Chaimbault P; Dufour A
    ChemSusChem; 2016 Apr; 9(8):863-72. PubMed ID: 26990591
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Catalytic performance of potassium in lignocellulosic biomass pyrolysis based on an optimized three-parallel distributed activation energy model.
    Wang C; Li L; Zeng Z; Xu X; Ma X; Chen R; Su C
    Bioresour Technol; 2019 Jun; 281():412-420. PubMed ID: 30849697
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensitivity analysis of three-parallel-DAEM-reaction model for describing rice straw pyrolysis.
    Cai J; Wu W; Liu R
    Bioresour Technol; 2013 Mar; 132():423-6. PubMed ID: 23280091
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass.
    Maddi B; Viamajala S; Varanasi S
    Bioresour Technol; 2011 Dec; 102(23):11018-26. PubMed ID: 21983407
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of the lignocellulosic material on fast pyrolysis yields and product quality.
    Carrier M; Joubert JE; Danje S; Hugo T; Görgens J; Knoetze JH
    Bioresour Technol; 2013 Dec; 150():129-38. PubMed ID: 24161551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NOx and N2O precursors from biomass pyrolysis: role of cellulose, hemicellulose and lignin.
    Ren Q; Zhao C
    Environ Sci Technol; 2013 Aug; 47(15):8955-61. PubMed ID: 23848228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A sequential method to analyze the kinetics of biomass pyrolysis.
    Huang YF; Kuan WH; Chiueh PT; Lo SL
    Bioresour Technol; 2011 Oct; 102(19):9241-6. PubMed ID: 21803573
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insight into synergistic effects of biomass-polypropylene co-pyrolysis using representative biomass constituents.
    Chen R; Zhang S; Cong K; Li Q; Zhang Y
    Bioresour Technol; 2020 Jul; 307():123243. PubMed ID: 32244077
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pyrolysis kinetics of potassium-impregnated rubberwood analyzed by evolutionary computation.
    Lin YY; Chen WH; Colin B; Lin BJ; Leconte F; Pétrissans A; Pétrissans M
    Bioresour Technol; 2021 Jan; 319():124145. PubMed ID: 32979598
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of thermochemical treatments on the lignocellulosic structure of wheat straw as studied by natural abundance 13C NMR.
    Habets S; de Wild PJ; Huijgen WJJ; van Eck ERH
    Bioresour Technol; 2013 Oct; 146():585-590. PubMed ID: 23973979
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass.
    López-González D; Fernandez-Lopez M; Valverde JL; Sanchez-Silva L
    Bioresour Technol; 2013 Sep; 143():562-74. PubMed ID: 23835261
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Superheated steam pyrolysis of biomass elemental components and Sugi (Japanese cedar) for fuels and chemicals.
    Sagehashi M; Miyasaka N; Shishido H; Sakoda A
    Bioresour Technol; 2006 Jul; 97(11):1272-83. PubMed ID: 16054811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.