BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

20 related articles for article (PubMed ID: 30075367)

  • 1. Chitosan-Derived Porous Activated Carbon for the Removal of the Chemical Warfare Agent Simulant Dimethyl Methylphosphonate.
    Yu H; Son YR; Yoo H; Cha HG; Lee H; Kim HS
    Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31795246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the Decomposition of Dimethyl Methyl Phosphonate on Metal-Modified TiO
    Bonney MJ; Tesvara C; Sautet P; White MG
    ACS Appl Mater Interfaces; 2024 May; 16(19):25483-25497. PubMed ID: 38709241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of the ZrO
    Wang X; Sun P; Zhao Z; Liu Y; Zhou S; Yang P; Dong Y
    Nanomaterials (Basel); 2024 Mar; 14(7):. PubMed ID: 38607145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Application of Microfibrous Entrapped Activated Carbon Composite Material for the Sarin Simulant Dimethyl Methylphosphonate Adsorption.
    Xie Y; Zheng C; Lan L; Song H; Kang J; Kang K; Bai S
    Nanomaterials (Basel); 2023 Sep; 13(19):. PubMed ID: 37836302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of TiO
    Zhang H; Wang X; Li N; Xia J; Meng Q; Ding J; Lu J
    RSC Adv; 2018 Oct; 8(60):34241-34251. PubMed ID: 35548617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Next-Generation Multifunctional Carbon-Metal Nanohybrids for Energy and Environmental Applications.
    Wang D; Saleh NB; Sun W; Park CM; Shen C; Aich N; Peijnenburg WJGM; Zhang W; Jin Y; Su C
    Environ Sci Technol; 2019 Jul; 53(13):7265-7287. PubMed ID: 31199142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of TiO
    Šťastný M; Štengl V; Henych J; Tolasz J; Kormunda M; Ederer J; Issa G; Janoš P
    RSC Adv; 2020 May; 10(33):19542-19552. PubMed ID: 35515455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake of a chemical warfare agent simulant (DMMP) on TiO2: reactive adsorption and active site poisoning.
    Panayotov DA; Morris JR
    Langmuir; 2009 Apr; 25(6):3652-8. PubMed ID: 19708249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Titanium Dioxide/Graphene Oxide Nanocomposites as Heterogeneous Catalysts for the Esterification of Benzoic Acid with Dimethyl Carbonate.
    Josephine DSR; Sakthivel B; Sethuraman K; Dhakshinamoorthy A
    Chempluschem; 2015 Sep; 80(9):1472-1477. PubMed ID: 31973349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the Suitability of the One-Step Hydrothermal Method for Preparation of Non-Covalently/Covalently-Bonded TiO₂/Graphene-Based Hybrids.
    Kusiak-Nejman E; Moszyński D; Kapica-Kozar J; Wanag A; Morawski AW
    Nanomaterials (Basel); 2018 Aug; 8(9):. PubMed ID: 30142880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants.
    Sayago I; Matatagui D; Fernández MJ; Fontecha JL; Jurewicz I; Garriga R; Muñoz E
    Talanta; 2016 Feb; 148():393-400. PubMed ID: 26653465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical warfare agent simulant DMMP reactive adsorption on TiO
    Henych J; Štengl V; Mattsson A; Tolasz J; Österlund L
    J Hazard Mater; 2018 Oct; 359():482-490. PubMed ID: 30075367
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 1.