These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
518 related articles for article (PubMed ID: 30075419)
21. Poly(ethylene glycol)-modified PAMAM-Fe3O4-doxorubicin triads with the potential for improved therapeutic efficacy: generation-dependent increased drug loading and retention at neutral pH and increased release at acidic pH. Nigam S; Chandra S; Newgreen DF; Bahadur D; Chen Q Langmuir; 2014 Feb; 30(4):1004-11. PubMed ID: 24446987 [TBL] [Abstract][Full Text] [Related]
22. Drug pH-sensitive release in vitro and targeting ability of polyamidoamine dendrimer complexes for tumor cells. Liu D; Hu H; Zhang J; Zhao X; Tang X; Chen D Chem Pharm Bull (Tokyo); 2011; 59(1):63-71. PubMed ID: 21212549 [TBL] [Abstract][Full Text] [Related]
23. Co-delivery of 10-hydroxycamptothecin with doxorubicin conjugated prodrugs for enhanced anticancer efficacy. Zhang Y; Xiao C; Li M; Chen J; Ding J; He C; Zhuang X; Chen X Macromol Biosci; 2013 May; 13(5):584-94. PubMed ID: 23420692 [TBL] [Abstract][Full Text] [Related]
24. Chitosan Immobilization on Bio-MOF Nanostructures: A Biocompatible pH-Responsive Nanocarrier for Doxorubicin Release on MCF-7 Cell Lines of Human Breast Cancer. Abazari R; Mahjoub AR; Ataei F; Morsali A; Carpenter-Warren CL; Mehdizadeh K; Slawin AMZ Inorg Chem; 2018 Nov; 57(21):13364-13379. PubMed ID: 30351060 [TBL] [Abstract][Full Text] [Related]
25. Ligand-directed reduction-sensitive shell-sheddable biodegradable micelles actively deliver doxorubicin into the nuclei of target cancer cells. Zhong Y; Yang W; Sun H; Cheng R; Meng F; Deng C; Zhong Z Biomacromolecules; 2013 Oct; 14(10):3723-30. PubMed ID: 23998942 [TBL] [Abstract][Full Text] [Related]
26. Synergistic Combination Chemotherapy of Lung Cancer: Cisplatin and Doxorubicin Conjugated Prodrug Loaded, Glutathione and pH Sensitive Nanocarriers. Jin Y; Wang Y; Liu X; Zhou J; Wang X; Feng H; Liu H Drug Des Devel Ther; 2020; 14():5205-5215. PubMed ID: 33268983 [TBL] [Abstract][Full Text] [Related]
27. Drug delivery system based on dendritic nanoparticles for enhancement of intravesical instillation. Qiu X; Cao K; Lin T; Chen W; Yuan A; Wu J; Hu Y; Guo H Int J Nanomedicine; 2017; 12():7365-7374. PubMed ID: 29066888 [TBL] [Abstract][Full Text] [Related]
28. Poly(ethyleneglycol)-b-poly(ε-caprolactone-co-γ-hydroxyl-ε- caprolactone) bearing pendant hydroxyl groups as nanocarriers for doxorubicin delivery. Chang L; Deng L; Wang W; Lv Z; Hu F; Dong A; Zhang J Biomacromolecules; 2012 Oct; 13(10):3301-10. PubMed ID: 22931197 [TBL] [Abstract][Full Text] [Related]
30. Hepatoma-targeting and pH-sensitive nanocarriers based on a novel D-galactopyranose copolymer for efficient drug delivery. Ding Y; Han J; Tian B; Han J; Zhang J; Zheng H; Han Y; Pei M Int J Pharm; 2014 Dec; 477(1-2):187-96. PubMed ID: 25455771 [TBL] [Abstract][Full Text] [Related]
31. Poly(amidoamine)-modified mesoporous silica nanoparticles as a mucoadhesive drug delivery system for potential bladder cancer therapy. Wang B; Zhang K; Wang J; Zhao R; Zhang Q; Kong X Colloids Surf B Biointerfaces; 2020 May; 189():110832. PubMed ID: 32070865 [TBL] [Abstract][Full Text] [Related]
32. Synthesis and characterization of a multifunctional gold-doxorubicin nanoparticle system for pH triggered intracellular anticancer drug release. Khutale GV; Casey A Eur J Pharm Biopharm; 2017 Oct; 119():372-380. PubMed ID: 28736333 [TBL] [Abstract][Full Text] [Related]
33. Targeted and pH-responsive delivery of doxorubicin to cancer cells using multifunctional dendrimer-modified multi-walled carbon nanotubes. Wen S; Liu H; Cai H; Shen M; Shi X Adv Healthc Mater; 2013 Sep; 2(9):1267-76. PubMed ID: 23447549 [TBL] [Abstract][Full Text] [Related]
34. Codelivery of Hydrophobic and Hydrophilic Drugs by Graphene-Decorated Magnetic Dendrimers. Pourjavadi A; Asgari S; Hosseini SH; Akhlaghi M Langmuir; 2018 Dec; 34(50):15304-15318. PubMed ID: 30424605 [TBL] [Abstract][Full Text] [Related]
35. The interaction of dendrimer-doxorubicin conjugates with a model pulmonary epithelium and their cosolvent-free, pseudo-solution formulations in pressurized metered-dose inhalers. Zhong Q; Humia BV; Punjabi AR; Padilha FF; da Rocha SRP Eur J Pharm Sci; 2017 Nov; 109():86-95. PubMed ID: 28774811 [TBL] [Abstract][Full Text] [Related]
36. Galactose-Containing Polymer-DOX Conjugates for Targeting Drug Delivery. Sun Y; Zhang J; Han J; Tian B; Shi Y; Ding Y; Wang L; Han J AAPS PharmSciTech; 2017 Apr; 18(3):749-758. PubMed ID: 27287244 [TBL] [Abstract][Full Text] [Related]
37. Preparation and in vitro characterization of pluronic-attached polyamidoamine dendrimers for drug delivery. Gu Z; Wang M; Fang Q; Zheng H; Wu F; Lin D; Xu Y; Jin Y Drug Dev Ind Pharm; 2015 May; 41(5):812-8. PubMed ID: 24745851 [TBL] [Abstract][Full Text] [Related]
38. AS1411 aptamer and folic acid functionalized pH-responsive ATRP fabricated pPEGMA-PCL-pPEGMA polymeric nanoparticles for targeted drug delivery in cancer therapy. Lale SV; R G A; Aravind A; Kumar DS; Koul V Biomacromolecules; 2014 May; 15(5):1737-52. PubMed ID: 24689987 [TBL] [Abstract][Full Text] [Related]
39. Redox and pH dual responsive poly(amidoamine) dendrimer-poly(ethylene glycol) conjugates for intracellular delivery of doxorubicin. Hu W; Qiu L; Cheng L; Hu Q; Liu Y; Hu Z; Chen D; Cheng L Acta Biomater; 2016 May; 36():241-53. PubMed ID: 26995505 [TBL] [Abstract][Full Text] [Related]
40. A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas. Li Y; He H; Jia X; Lu WL; Lou J; Wei Y Biomaterials; 2012 May; 33(15):3899-908. PubMed ID: 22364698 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]