These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30075483)

  • 1. Sharp wave-associated activity patterns of cortical neurons in the mouse piriform cortex.
    Katori K; Manabe H; Nakashima A; Dunfu E; Sasaki T; Ikegaya Y; Takeuchi H
    Eur J Neurosci; 2018 Nov; 48(10):3246-3254. PubMed ID: 30075483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sharp wave-associated synchronized inputs from the piriform cortex activate olfactory tubercle neurons during slow-wave sleep.
    Narikiyo K; Manabe H; Mori K
    J Neurophysiol; 2014 Jan; 111(1):72-81. PubMed ID: 24108798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal coordination of olfactory cortex sharp-wave activity with up- and downstates in the orbitofrontal cortex during slow-wave sleep.
    Onisawa N; Manabe H; Mori K
    J Neurophysiol; 2017 Jan; 117(1):123-135. PubMed ID: 27733591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Olfactory cortex generates synchronized top-down inputs to the olfactory bulb during slow-wave sleep.
    Manabe H; Kusumoto-Yoshida I; Ota M; Mori K
    J Neurosci; 2011 Jun; 31(22):8123-33. PubMed ID: 21632934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of sleep in the plasticity of the olfactory system.
    Yamaguchi M
    Neurosci Res; 2017 May; 118():21-29. PubMed ID: 28501498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-unit activity in piriform cortex during slow-wave state is shaped by recent odor experience.
    Wilson DA
    J Neurosci; 2010 Feb; 30(5):1760-5. PubMed ID: 20130185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sleep and olfactory cortical plasticity.
    Barnes DC; Wilson DA
    Front Behav Neurosci; 2014; 8():134. PubMed ID: 24795585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordinated Interaction between Hippocampal Sharp-Wave Ripples and Anterior Cingulate Unit Activity.
    Wang DV; Ikemoto S
    J Neurosci; 2016 Oct; 36(41):10663-10672. PubMed ID: 27733616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In the Piriform Cortex, the Primary Impetus for Information Encoding through Synaptic Plasticity Is Provided by Descending Rather than Ascending Olfactory Inputs.
    Strauch C; Manahan-Vaughan D
    Cereb Cortex; 2018 Feb; 28(2):764-776. PubMed ID: 29186359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous activity in the piriform cortex extends the dynamic range of cortical odor coding.
    Tantirigama ML; Huang HH; Bekkers JM
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2407-2412. PubMed ID: 28196887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hippocampal coupling with cortical and subcortical structures in the context of memory consolidation.
    Skelin I; Kilianski S; McNaughton BL
    Neurobiol Learn Mem; 2019 Apr; 160():21-31. PubMed ID: 29660400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Roles of Cortical Slow Waves in Synaptic Plasticity and Memory Consolidation.
    Miyamoto D; Hirai D; Murayama M
    Front Neural Circuits; 2017; 11():92. PubMed ID: 29213231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity-dependent plasticity of mouse hippocampal assemblies in vitro.
    Keller MK; Draguhn A; Both M; Reichinnek S
    Front Neural Circuits; 2015; 9():21. PubMed ID: 26041998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow-wave sleep-imposed replay modulates both strength and precision of memory.
    Barnes DC; Wilson DA
    J Neurosci; 2014 Apr; 34(15):5134-42. PubMed ID: 24719093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encoding of Odor Fear Memories in the Mouse Olfactory Cortex.
    Meissner-Bernard C; Dembitskaya Y; Venance L; Fleischmann A
    Curr Biol; 2019 Feb; 29(3):367-380.e4. PubMed ID: 30612908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep-like states modulate functional connectivity in the rat olfactory system.
    Wilson DA; Yan X
    J Neurophysiol; 2010 Dec; 104(6):3231-9. PubMed ID: 20861440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of Neuronal Reactivation in Memory Consolidation: A Perspective from Pathological Conditions.
    Xiang LY; Chen XY; Lu LM; Kong MH; Ji Q; Xiong Y; Xie MM; Jian XL; Zhu ZR
    Neuroscience; 2024 Jul; 551():196-204. PubMed ID: 38810690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Odor identity can be extracted from the reciprocal connectivity between olfactory bulb and piriform cortex in humans.
    Iravani B; Arshamian A; Lundqvist M; Kay LM; Wilson DA; Lundström JN
    Neuroimage; 2021 Aug; 237():118130. PubMed ID: 33951509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective activation of deep layer (V-VI) retrohippocampal cortical neurons during hippocampal sharp waves in the behaving rat.
    Chrobak JJ; Buzsáki G
    J Neurosci; 1994 Oct; 14(10):6160-70. PubMed ID: 7931570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The distributed circuit within the piriform cortex makes odor discrimination robust.
    Srinivasan S; Stevens CF
    J Comp Neurol; 2018 Dec; 526(17):2725-2743. PubMed ID: 30014545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.