These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 30075686)
1. Acoustic properties of porous microlattices from effective medium to scattering dominated regimes. Krödel S; Palermo A; Daraio C J Acoust Soc Am; 2018 Jul; 144(1):319. PubMed ID: 30075686 [TBL] [Abstract][Full Text] [Related]
2. Measurements of ultrasound velocity and attenuation in numerical anisotropic porous media compared to Biot's and multiple scattering models. Mézière F; Muller M; Bossy E; Derode A Ultrasonics; 2014 Jul; 54(5):1146-54. PubMed ID: 24125533 [TBL] [Abstract][Full Text] [Related]
4. Wave-induced fluid flow in random porous media: attenuation and dispersion of elastic waves. Müller TM; Gurevich B J Acoust Soc Am; 2005 May; 117(5):2732-41. PubMed ID: 15957744 [TBL] [Abstract][Full Text] [Related]
5. Simulation of ultrasound propagation through bovine cancellous bone using elastic and Biot's finite-difference time-domain methods. Hosokawa A J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1782-9. PubMed ID: 16240836 [TBL] [Abstract][Full Text] [Related]
6. Acoustic behavior of a rigidly backed poroelastic layer with periodic resonant inclusions by a multiple scattering approach. Weisser T; Groby JP; Dazel O; Gaultier F; Deckers E; Futatsugi S; Monteiro L J Acoust Soc Am; 2016 Feb; 139(2):617-29. PubMed ID: 26936546 [TBL] [Abstract][Full Text] [Related]
7. Phenomenological model of propagation of the elastic waves in a fluid-saturated porous solid with nonzero boundary slip velocity. Tsiklauri D J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):843-9. PubMed ID: 12243170 [TBL] [Abstract][Full Text] [Related]
8. A first-order statistical smoothing approximation for the coherent wave field in random porous random media. Müller TM; Gurevich B J Acoust Soc Am; 2005 Apr; 117(4 Pt 1):1796-805. PubMed ID: 15898626 [TBL] [Abstract][Full Text] [Related]
9. Acoustic behaviour of high pressure air-filled porous media. Griffiths S; Ayrault C Ultrasonics; 2009 Feb; 49(2):185-94. PubMed ID: 19027132 [TBL] [Abstract][Full Text] [Related]
10. Application of Biot's theory to ultrasonic characterization of human cancellous bones: determination of structural, material, and mechanical properties. Pakula M; Padilla F; Laugier P; Kaczmarek M J Acoust Soc Am; 2008 Apr; 123(4):2415-23. PubMed ID: 18397044 [TBL] [Abstract][Full Text] [Related]
11. Compressional wave propagation in saturated porous media and its numerical analysis using a space-time conservation element and solution element method. Yang D Rev Sci Instrum; 2021 Dec; 92(12):125108. PubMed ID: 34972452 [TBL] [Abstract][Full Text] [Related]
12. Wave propagation in sandwich panels with a poroelastic core. Liu H; Finnveden S; Barbagallo M; Arteaga IL J Acoust Soc Am; 2014 May; 135(5):2683-93. PubMed ID: 24815252 [TBL] [Abstract][Full Text] [Related]
14. Ultrasonic bandgaps in 3D-printed periodic ceramic microlattices. Kruisová A; Ševčík M; Seiner H; Sedlák P; Román-Manso B; Miranzo P; Belmonte M; Landa M Ultrasonics; 2018 Jan; 82():91-100. PubMed ID: 28787613 [TBL] [Abstract][Full Text] [Related]
15. Comparison of acoustic characteristics predicted by Biot's theory and the modified Biot-Attenborough model in cancellous bone. Lee KI; Yoon SW J Biomech; 2006; 39(2):364-8. PubMed ID: 16321640 [TBL] [Abstract][Full Text] [Related]
16. Dispersion and attenuation due to scattering from heterogeneities of the frame bulk modulus of a poroelastic medium. Hefner BT; Jackson DR J Acoust Soc Am; 2010 Jun; 127(6):3372-84. PubMed ID: 20550237 [TBL] [Abstract][Full Text] [Related]
17. Prediction of negative dispersion by a nonlocal poroelastic theory. Chakraborty A J Acoust Soc Am; 2008 Jan; 123(1):56-67. PubMed ID: 18177138 [TBL] [Abstract][Full Text] [Related]
18. Scattering by a fluid cylinder in a porous medium: application to trabecular bone. Luppé F; Conoir JM; Franklin H J Acoust Soc Am; 2002 Jun; 111(6):2573-82. PubMed ID: 12083188 [TBL] [Abstract][Full Text] [Related]
19. Microstructure-based modeling to characterize low pore density open-cell foams and its experimental validation. Sachan S; Ramamoorthy S J Acoust Soc Am; 2024 Jan; 155(1):188-205. PubMed ID: 38180151 [TBL] [Abstract][Full Text] [Related]