BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 30075704)

  • 1. Reiterative use of FGF signaling in mesoderm development during embryogenesis and metamorphosis in the hemichordate Ptychodera flava.
    Fan TP; Ting HC; Yu JK; Su YH
    BMC Evol Biol; 2018 Aug; 18(1):120. PubMed ID: 30075704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FGF signaling repertoire of the indirect developing hemichordate Ptychodera flava.
    Fan TP; Su YH
    Mar Genomics; 2015 Dec; 24 Pt 2():167-75. PubMed ID: 26232261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FGF signaling induces mesoderm in the hemichordate Saccoglossus kowalevskii.
    Green SA; Norris RP; Terasaki M; Lowe CJ
    Development; 2013 Mar; 140(5):1024-33. PubMed ID: 23344709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ventralization of an indirect developing hemichordate by NiCl₂ suggests a conserved mechanism of dorso-ventral (D/V) patterning in Ambulacraria (hemichordates and echinoderms).
    Röttinger E; Martindale MQ
    Dev Biol; 2011 Jun; 354(1):173-90. PubMed ID: 21466800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ptychoderid hemichordate neurulation without a notochord.
    Luttrell S; Konikoff C; Byrne A; Bengtsson B; Swalla BJ
    Integr Comp Biol; 2012 Dec; 52(6):829-34. PubMed ID: 22966063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative molecular approach to mesodermal patterning in basal deuterostomes: the expression pattern of Brachyury in the enteropneust hemichordate Ptychodera flava.
    Peterson KJ; Cameron RA; Tagawa K; Satoh N; Davidson EH
    Development; 1999 Jan; 126(1):85-95. PubMed ID: 9834188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reproductive periodicity, spawning induction, and larval metamorphosis of the hemichordate acorn worm Ptychodera flava.
    Lin CY; Tung CH; Yu JK; Su YH
    J Exp Zool B Mol Dev Evol; 2016 Jan; 326(1):47-60. PubMed ID: 26663879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nodal signaling is required for mesodermal and ventral but not for dorsal fates in the indirect developing hemichordate, Ptychodera flava.
    Röttinger E; DuBuc TQ; Amiel AR; Martindale MQ
    Biol Open; 2015 May; 4(7):830-42. PubMed ID: 25979707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nodal and Fgf pathways interact through a positive regulatory loop and synergize to maintain mesodermal cell populations.
    Mathieu J; Griffin K; Herbomel P; Dickmeis T; Strähle U; Kimelman D; Rosa FM; Peyriéras N
    Development; 2004 Feb; 131(3):629-41. PubMed ID: 14711879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for BMP-mediated specification of primordial germ cells in an indirect-developing hemichordate.
    Lin CY; Yu JK; Su YH
    Evol Dev; 2021 Jan; 23(1):28-45. PubMed ID: 33283431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HrzicN, a new Zic family gene of ascidians, plays essential roles in the neural tube and notochord development.
    Wada S; Saiga H
    Development; 2002 Dec; 129(24):5597-608. PubMed ID: 12421701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zebrafish fgf24 functions with fgf8 to promote posterior mesodermal development.
    Draper BW; Stock DW; Kimmel CB
    Development; 2003 Oct; 130(19):4639-54. PubMed ID: 12925590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nodal signaling and the evolution of deuterostome gastrulation.
    Chea HK; Wright CV; Swalla BJ
    Dev Dyn; 2005 Oct; 234(2):269-78. PubMed ID: 16127715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular studies of hemichordate development: a key to understanding the evolution of bilateral animals and chordates.
    Tagawa K; Satoh N; Humphreys T
    Evol Dev; 2001; 3(6):443-54. PubMed ID: 11806640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of FGF signaling in the establishment and maintenance of mesodermal gene expression in Xenopus.
    Fletcher RB; Harland RM
    Dev Dyn; 2008 May; 237(5):1243-54. PubMed ID: 18386826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FGF and canonical Wnt signaling cooperate to induce paraxial mesoderm from tailbud neuromesodermal progenitors through regulation of a two-step epithelial to mesenchymal transition.
    Goto H; Kimmey SC; Row RH; Matus DQ; Martin BL
    Development; 2017 Apr; 144(8):1412-1424. PubMed ID: 28242612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cDNA resource for gene expression studies of a hemichordate, Ptychodera flava.
    Tagawa K; Arimoto A; Sasaki A; Izumi M; Fujita S; Humphreys T; Fujiyama A; Kagoshima H; Shin-I T; Kohara Y; Satoh N; Kawashima T
    Zoolog Sci; 2014 Jul; 31(7):414-20. PubMed ID: 25001912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Craniofacial Muscle Development.
    Michailovici I; Eigler T; Tzahor E
    Curr Top Dev Biol; 2015; 115():3-30. PubMed ID: 26589919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functions of the FGF signalling pathway in cephalochordates provide insight into the evolution of the prechordal plate.
    Meister L; Escriva H; Bertrand S
    Development; 2022 May; 149(10):. PubMed ID: 35575387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.