BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 30075852)

  • 1. Developments in support materials for immobilization of oxidoreductases: A comprehensive review.
    Zdarta J; Meyer AS; Jesionowski T; Pinelo M
    Adv Colloid Interface Sci; 2018 Aug; 258():1-20. PubMed ID: 30075852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emerging contaminants of high concern and their enzyme-assisted biodegradation - A review.
    Bilal M; Adeel M; Rasheed T; Zhao Y; Iqbal HMN
    Environ Int; 2019 Mar; 124():336-353. PubMed ID: 30660847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioremediation of Hazardous Pollutants Using Enzyme-Immobilized Reactors.
    Yamaguchi H; Miyazaki M
    Molecules; 2024 Apr; 29(9):. PubMed ID: 38731512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-faceted strategy based on enzyme immobilization with reactant adsorption and membrane technology for biocatalytic removal of pollutants: A critical review.
    Zdarta J; Meyer AS; Jesionowski T; Pinelo M
    Biotechnol Adv; 2019 Nov; 37(7):107401. PubMed ID: 31128206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidoreductase enzymes: Characteristics, applications, and challenges as a biocatalyst.
    Cárdenas-Moreno Y; González-Bacerio J; García Arellano H; Del Monte-Martínez A
    Biotechnol Appl Biochem; 2023 Dec; 70(6):2108-2135. PubMed ID: 37753743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-magnetic and magnetically responsive support materials immobilized peroxidases for biocatalytic degradation of emerging dye pollutants-A review.
    Khalid N; Kalsoom U; Ahsan Z; Bilal M
    Int J Biol Macromol; 2022 May; 207():387-401. PubMed ID: 35278508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymeric pollutant biodegradation through microbial oxidoreductase: A better strategy to safe environment.
    Khatoon N; Jamal A; Ali MI
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):9-16. PubMed ID: 28648638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent development in the application of immobilized oxidative enzymes for bioremediation of hazardous micropollutants - A review.
    Shakerian F; Zhao J; Li SP
    Chemosphere; 2020 Jan; 239():124716. PubMed ID: 31521938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistence of pesticides-based contaminants in the environment and their effective degradation using laccase-assisted biocatalytic systems.
    Bilal M; Iqbal HMN; Barceló D
    Sci Total Environ; 2019 Dec; 695():133896. PubMed ID: 31756868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme Immobilization: An Overview on Methods, Support Material, and Applications of Immobilized Enzymes.
    Sirisha VL; Jain A; Jain A
    Adv Food Nutr Res; 2016; 79():179-211. PubMed ID: 27770861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer materials for enzyme immobilization and their application in bioreactors.
    Fang Y; Huang XJ; Chen PC; Xu ZK
    BMB Rep; 2011 Feb; 44(2):87-95. PubMed ID: 21345306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization as a strategy for improving enzyme properties-application to oxidoreductases.
    Guzik U; Hupert-Kocurek K; Wojcieszyńska D
    Molecules; 2014 Jun; 19(7):8995-9018. PubMed ID: 24979403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Advance in enzymological remediation of polluted soils].
    Zhang L; Chen L; Liu G; Wu Z
    Ying Yong Sheng Tai Xue Bao; 2003 Dec; 14(12):2342-6. PubMed ID: 15031947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in the application of immobilized enzyme for the remediation of hazardous pollutant: A review.
    Yaashikaa PR; Devi MK; Kumar PS
    Chemosphere; 2022 Jul; 299():134390. PubMed ID: 35339523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymes immobilized in mesoporous silica: a physical-chemical perspective.
    Carlsson N; Gustafsson H; Thörn C; Olsson L; Holmberg K; Åkerman B
    Adv Colloid Interface Sci; 2014 Mar; 205():339-60. PubMed ID: 24112562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization of enzymes on porous silicas--benefits and challenges.
    Hartmann M; Kostrov X
    Chem Soc Rev; 2013 Aug; 42(15):6277-89. PubMed ID: 23765193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene based enzymatic bioelectrodes and biofuel cells.
    Karimi A; Othman A; Uzunoglu A; Stanciu L; Andreescu S
    Nanoscale; 2015 Apr; 7(16):6909-23. PubMed ID: 25832672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hollow silica microspheres as robust immobilization carriers.
    Snoch W; Tataruch M; Zastawny O; Cichoń E; Gosselin M; Cabana H; Guzik M
    Bioorg Chem; 2019 Dec; 93():102813. PubMed ID: 30833027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of Amaranthus leaf oxalate oxidase on alkylamine glass.
    Pundir CS; Goyal L; Thakur M; Bhargava AK
    Indian J Biochem Biophys; 1999 Dec; 36(6):449-52. PubMed ID: 10845000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of oxidoreductases.
    May SW
    Curr Opin Biotechnol; 1999 Aug; 10(4):370-5. PubMed ID: 10449319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.