BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

534 related articles for article (PubMed ID: 30076192)

  • 1. Outer Membrane Iron Uptake Pathways in the Model Cyanobacterium Synechocystis sp. Strain PCC 6803.
    Qiu GW; Lou WJ; Sun CY; Yang N; Li ZK; Li DL; Zang SS; Fu FX; Hutchins DA; Jiang HB; Qiu BS
    Appl Environ Microbiol; 2018 Oct; 84(19):. PubMed ID: 30076192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insights into iron acquisition by cyanobacteria: an essential role for ExbB-ExbD complex in inorganic iron uptake.
    Jiang HB; Lou WJ; Ke WT; Song WY; Price NM; Qiu BS
    ISME J; 2015 Feb; 9(2):297-309. PubMed ID: 25012898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity and Evolution of Iron Uptake Pathways in Marine Cyanobacteria from the Perspective of the Coastal Strain
    Yong CW; Deng B; Liu LM; Wang XW; Jiang HB
    Appl Environ Microbiol; 2023 Jan; 89(1):e0173222. PubMed ID: 36533965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A unique porin meditates iron-selective transport through cyanobacterial outer membranes.
    Qiu GW; Jiang HB; Lis H; Li ZK; Deng B; Shang JL; Sun CY; Keren N; Qiu BS
    Environ Microbiol; 2021 Jan; 23(1):376-390. PubMed ID: 33196124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TonB-dependent transporters and their occurrence in cyanobacteria.
    Mirus O; Strauss S; Nicolaisen K; von Haeseler A; Schleiff E
    BMC Biol; 2009 Oct; 7():68. PubMed ID: 19821963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TonB-Dependent Utilization of Dihydroxamate Xenosiderophores in Synechocystis sp. PCC 6803.
    Babykin MM; Obando TSA; Zinchenko VV
    Curr Microbiol; 2018 Feb; 75(2):117-123. PubMed ID: 28900692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Diversity of TonB-Like Proteins in the Heterocyst-Forming Cyanobacterium
    Schätzle H; Arévalo S; Fresenborg L; Seitz HM; Flores E; Schleiff E
    mSphere; 2021 Dec; 6(6):e0021421. PubMed ID: 34787445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Cluster of Five Genes Essential for the Utilization of Dihydroxamate Xenosiderophores in Synechocystis sp. PCC 6803.
    Obando S TA; Babykin MM; Zinchenko VV
    Curr Microbiol; 2018 Sep; 75(9):1165-1173. PubMed ID: 29785634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sll1263, a unique cation diffusion facilitator protein that promotes iron uptake in the cyanobacterium Synechocystis sp. Strain PCC 6803.
    Jiang HB; Lou WJ; Du HY; Price NM; Qiu BS
    Plant Cell Physiol; 2012 Aug; 53(8):1404-17. PubMed ID: 22685083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordinated transporter activity shapes high-affinity iron acquisition in cyanobacteria.
    Kranzler C; Lis H; Finkel OM; Schmetterer G; Shaked Y; Keren N
    ISME J; 2014 Feb; 8(2):409-17. PubMed ID: 24088625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple modes of iron uptake by the filamentous, siderophore-producing cyanobacterium, Anabaena sp. PCC 7120.
    Rudolf M; Kranzler C; Lis H; Margulis K; Stevanovic M; Keren N; Schleiff E
    Mol Microbiol; 2015 Aug; 97(3):577-88. PubMed ID: 25943160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplicity and specificity of siderophore uptake in the cyanobacterium Anabaena sp. PCC 7120.
    Rudolf M; Stevanovic M; Kranzler C; Pernil R; Keren N; Schleiff E
    Plant Mol Biol; 2016 Sep; 92(1-2):57-69. PubMed ID: 27325117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of reduction in iron uptake processes in a unicellular, planktonic cyanobacterium.
    Kranzler C; Lis H; Shaked Y; Keren N
    Environ Microbiol; 2011 Nov; 13(11):2990-9. PubMed ID: 21906223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidation of the coping strategy in an OMP homozygous knockout mutant of Synechocystis 6803 defective in iron uptake.
    Agarwal R
    Arch Microbiol; 2022 Jun; 204(7):358. PubMed ID: 35657498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of an iron permease, cFTR1, in cyanobacteria involved in the iron reduction/re-oxidation uptake pathway.
    Xu N; Qiu GW; Lou WJ; Li ZK; Jiang HB; Price NM; Qiu BS
    Environ Microbiol; 2016 Dec; 18(12):5005-5017. PubMed ID: 27450384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced ferrihydrite dissolution by a unicellular, planktonic cyanobacterium: a biological contribution to particulate iron bioavailability.
    Kranzler C; Kessler N; Keren N; Shaked Y
    Environ Microbiol; 2016 Dec; 18(12):5101-5111. PubMed ID: 27516103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure, function and binding selectivity and stereoselectivity of siderophore-iron outer membrane transporters.
    Schalk IJ; Mislin GL; Brillet K
    Curr Top Membr; 2012; 69():37-66. PubMed ID: 23046646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Special roles for efflux systems in iron homeostasis of non-siderophore-producing cyanobacteria.
    Liu LM; Li DL; Deng B; Wang XW; Jiang HB
    Environ Microbiol; 2022 Feb; 24(2):551-565. PubMed ID: 33817959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Outer Membrane Permeability of Cyanobacterium Synechocystis sp. Strain PCC 6803: Studies of Passive Diffusion of Small Organic Nutrients Reveal the Absence of Classical Porins and Intrinsically Low Permeability.
    Kowata H; Tochigi S; Takahashi H; Kojima S
    J Bacteriol; 2017 Oct; 199(19):. PubMed ID: 28696278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The components of the putative iron transport system in the cyanobacterium Anabaena sp. PCC 7120.
    Stevanovic M; Hahn A; Nicolaisen K; Mirus O; Schleiff E
    Environ Microbiol; 2012 Jul; 14(7):1655-70. PubMed ID: 22059483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.