These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
477 related articles for article (PubMed ID: 30076217)
1. Microphthalmia-associated transcription factor up-regulates acetylcholinesterase expression during melanogenesis of murine melanoma cells. Wu Q; Fung AHY; Xu ML; Poon K; Liu EYL; Kong XP; Yao P; Xiong QP; Dong TTX; Tsim KWK J Biol Chem; 2018 Sep; 293(37):14417-14428. PubMed ID: 30076217 [TBL] [Abstract][Full Text] [Related]
2. A novel adamantyl benzylbenzamide derivative, AP736, suppresses melanogenesis through the inhibition of cAMP-PKA-CREB-activated microphthalmia-associated transcription factor and tyrosinase expression. Lee CS; Jang WH; Park M; Jung K; Baek HS; Joo YH; Park YH; Lim KM Exp Dermatol; 2013 Nov; 22(11):762-4. PubMed ID: 24107097 [TBL] [Abstract][Full Text] [Related]
3. Diethylstilbestrol enhances melanogenesis via cAMP-PKA-mediating up-regulation of tyrosinase and MITF in mouse B16 melanoma cells. Jian D; Jiang D; Su J; Chen W; Hu X; Kuang Y; Xie H; Li J; Chen X Steroids; 2011 Nov; 76(12):1297-304. PubMed ID: 21745488 [TBL] [Abstract][Full Text] [Related]
4. NDRG2 gene expression in B16F10 melanoma cells restrains melanogenesis via inhibition of Mitf expression. Kim A; Yang Y; Lee MS; Yoo YD; Lee HG; Lim JS Pigment Cell Melanoma Res; 2008 Dec; 21(6):653-64. PubMed ID: 19067970 [TBL] [Abstract][Full Text] [Related]
5. Vasoactive intestinal peptide stimulates melanogenesis in B16F10 mouse melanoma cells via CREB/MITF/tyrosinase signaling. Yuan XH; Yao C; Oh JH; Park CH; Tian YD; Han M; Kim JE; Chung JH; Jin ZH; Lee DH Biochem Biophys Res Commun; 2016 Aug; 477(3):336-42. PubMed ID: 27343558 [TBL] [Abstract][Full Text] [Related]
6. SMILE Downregulation during Melanogenesis Induces MITF Transcription in B16F10 Cells. Truong XT; Lee YS; Nguyen TTP; Kim HJ; Kim SH; Moon C; Kim DK; Choi HS; Jeon TI Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499416 [TBL] [Abstract][Full Text] [Related]
7. G protein-coupled estrogen receptor enhances melanogenesis via cAMP-protein kinase (PKA) by upregulating microphthalmia-related transcription factor-tyrosinase in melanoma. Sun M; Xie HF; Tang Y; Lin SQ; Li JM; Sun SN; Hu XL; Huang YX; Shi W; Jian D J Steroid Biochem Mol Biol; 2017 Jan; 165(Pt B):236-246. PubMed ID: 27378491 [TBL] [Abstract][Full Text] [Related]
8. Fraxinol Stimulates Melanogenesis in B16F10 Mouse Melanoma Cells through CREB/MITF Signaling. Moon SY; Akter KM; Ahn MJ; Kim KD; Yoo J; Lee JH; Lee JH; Hwangbo C Molecules; 2022 Feb; 27(5):. PubMed ID: 35268650 [TBL] [Abstract][Full Text] [Related]
9. Anti-melanogenesis effect of dehydroglyasperin C through the downregulation of MITF via the reduction of intracellular cAMP and acceleration of ERK activation in B16F1 melanoma cells. Lim JW; Ha JH; Jeong YJ; Park SN Pharmacol Rep; 2018 Oct; 70(5):930-935. PubMed ID: 30099299 [TBL] [Abstract][Full Text] [Related]
10. Cilostazol promotes production of melanin by activating the microphthalmia-associated transcription factor (MITF). Wei B; Zhang YP; Yan HZ; Xu Y; Du TM Biochem Biophys Res Commun; 2014 Jan; 443(2):617-21. PubMed ID: 24333333 [TBL] [Abstract][Full Text] [Related]
11. p44/42 MAPK signaling is a prime target activated by phenylethyl resorcinol in its anti-melanogenic action. Kang M; Park SH; Park SJ; Oh SW; Yoo JA; Kwon K; Kim J; Yu E; Cho JY; Lee J Phytomedicine; 2019 May; 58():152877. PubMed ID: 30849679 [TBL] [Abstract][Full Text] [Related]
12. Melanogenesis-inducing effect of cirsimaritin through increases in microphthalmia-associated transcription factor and tyrosinase expression. Kim HJ; Kim IS; Dong Y; Lee IS; Kim JS; Kim JS; Woo JT; Cha BY Int J Mol Sci; 2015 Apr; 16(4):8772-88. PubMed ID: 25903150 [TBL] [Abstract][Full Text] [Related]
13. Gynostemma pentaphyllum saponins induce melanogenesis and activate cAMP/PKA and Wnt/β-catenin signaling pathways. Tsang TF; Chan B; Tai WC; Huang G; Wang J; Li X; Jiang ZH; Hsiao WLW Phytomedicine; 2019 Jul; 60():153008. PubMed ID: 31288940 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms of melanogenesis inhibition by 2,5-dimethyl-4-hydroxy-3(2H)-furanone. Lee J; Jung E; Lee J; Huh S; Boo YC; Hyun CG; Kim YS; Park D Br J Dermatol; 2007 Aug; 157(2):242-8. PubMed ID: 17650175 [TBL] [Abstract][Full Text] [Related]
15. Manassantin A inhibits cAMP-induced melanin production by down-regulating the gene expressions of MITF and tyrosinase in melanocytes. Lee HD; Lee WH; Roh E; Seo CS; Son JK; Lee SH; Hwang BY; Jung SH; Han SB; Kim Y Exp Dermatol; 2011 Sep; 20(9):761-3. PubMed ID: 21569106 [TBL] [Abstract][Full Text] [Related]
16. An inhibitory mechanism of action of a novel syringic-acid derivative on α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis. Jeong YJ; Lee JY; Park J; Park SN Life Sci; 2017 Dec; 191():52-58. PubMed ID: 28993145 [TBL] [Abstract][Full Text] [Related]
17. Anti-melanogenic activity of phytosphingosine via the modulation of the microphthalmia-associated transcription factor signaling pathway. Jang EJ; Shin Y; Park HJ; Kim D; Jung C; Hong JY; Kim S; Lee SK J Dermatol Sci; 2017 Jul; 87(1):19-28. PubMed ID: 28390782 [TBL] [Abstract][Full Text] [Related]
18. Partially purified components of Nardostachys chinensis suppress melanin synthesis through ERK and Akt signaling pathway with cAMP down-regulation in B16F10 cells. Jang JY; Kim HN; Kim YR; Choi WY; Choi YH; Shin HK; Choi BT J Ethnopharmacol; 2011 Oct; 137(3):1207-14. PubMed ID: 21816215 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of α-melanocyte-stimulating hormone-induced melanogenesis and molecular mechanisms by polyphenol-enriched fraction of Tagetes erecta L. flower. Sanjaya SS; Park MH; Karunarathne WAHM; Lee KT; Choi YH; Kang CH; Lee MH; Jung MJ; Ryu HW; Kim GY Phytomedicine; 2024 Apr; 126():155442. PubMed ID: 38394730 [TBL] [Abstract][Full Text] [Related]
20. Anti-melanogenic effects of oyster hydrolysate in UVB-irradiated C57BL/6J mice and B16F10 melanoma cells via downregulation of cAMP signaling pathway. Han JH; Bang JS; Choi YJ; Choung SY J Ethnopharmacol; 2019 Jan; 229():137-144. PubMed ID: 30273735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]