These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 30076353)
1. Intrinsic and extrinsic drops in open-circuit voltage and conversion efficiency in solar cells with quantum dots embedded in host materials. Zhu L; Akiyama H; Kanemitsu Y Sci Rep; 2018 Aug; 8(1):11704. PubMed ID: 30076353 [TBL] [Abstract][Full Text] [Related]
2. Improvement of power conversion efficiency by a stepwise band-gap structure for silicon quantum dot solar cells. Kwak GY; Kim TG; Kim N; Shin JY; Kim KJ Nanotechnology; 2020 May; 31(19):195404. PubMed ID: 31986507 [TBL] [Abstract][Full Text] [Related]
3. Open-circuit voltage deficit, radiative sub-bandgap states, and prospects in quantum dot solar cells. Chuang CH; Maurano A; Brandt RE; Hwang GW; Jean J; Buonassisi T; Bulović V; Bawendi MG Nano Lett; 2015 May; 15(5):3286-94. PubMed ID: 25927871 [TBL] [Abstract][Full Text] [Related]
4. Recombination Suppression in PbS Quantum Dot Heterojunction Solar Cells by Energy-Level Alignment in the Quantum Dot Active Layers. Ding C; Zhang Y; Liu F; Nakazawa N; Huang Q; Hayase S; Ogomi Y; Toyoda T; Wang R; Shen Q ACS Appl Mater Interfaces; 2018 Aug; 10(31):26142-26152. PubMed ID: 28862833 [TBL] [Abstract][Full Text] [Related]
5. Origin of Reduced Open-Circuit Voltage in Highly Efficient Small-Molecule-Based Solar Cells upon Solvent Vapor Annealing. Deng W; Gao K; Yan J; Liang Q; Xie Y; He Z; Wu H; Peng X; Cao Y ACS Appl Mater Interfaces; 2018 Mar; 10(9):8141-8147. PubMed ID: 29411601 [TBL] [Abstract][Full Text] [Related]
6. Enhanced light absorption and charge recombination control in quantum dot sensitized solar cells using tin doped cadmium sulfide quantum dots. Muthalif MPA; Sunesh CD; Choe Y J Colloid Interface Sci; 2019 Jan; 534():291-300. PubMed ID: 30237116 [TBL] [Abstract][Full Text] [Related]
7. Origin of the Below-Bandgap Turn-On Voltage in Light-Emitting Diodes and the High V Pradhan S; Dalmases M; Konstantatos G J Phys Chem Lett; 2019 Jun; 10(11):3029-3034. PubMed ID: 31117688 [TBL] [Abstract][Full Text] [Related]
8. Quantum heat engine power can be increased by noise-induced coherence. Scully MO; Chapin KR; Dorfman KE; Kim MB; Svidzinsky A Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15097-100. PubMed ID: 21876187 [TBL] [Abstract][Full Text] [Related]
9. Preventing interfacial recombination in colloidal quantum dot solar cells by doping the metal oxide. Ehrler B; Musselman KP; Böhm ML; Morgenstern FS; Vaynzof Y; Walker BJ; Macmanus-Driscoll JL; Greenham NC ACS Nano; 2013 May; 7(5):4210-20. PubMed ID: 23531107 [TBL] [Abstract][Full Text] [Related]
10. Investigation of the open-circuit voltage in solar cells doped with quantum dots. Tayagaki T; Hoshi Y; Usami N Sci Rep; 2013 Sep; 3():2703. PubMed ID: 24067805 [TBL] [Abstract][Full Text] [Related]
11. Passivation of PbS Quantum Dot Surface with l-Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells. Jumabekov AN; Cordes N; Siegler TD; Docampo P; Ivanova A; Fominykh K; Medina DD; Peter LM; Bein T ACS Appl Mater Interfaces; 2016 Feb; 8(7):4600-7. PubMed ID: 26771519 [TBL] [Abstract][Full Text] [Related]
12. An energy-harvesting scheme employing CuGaSe2 quantum dot-modified ZnO buffer layers for drastic conversion efficiency enhancement in inorganic-organic hybrid solar cells. Ho CR; Tsai ML; Jhuo HJ; Lien DH; Lin CA; Tsai SH; Wei TC; Huang KP; Chen SA; He JH Nanoscale; 2013 Jul; 5(14):6350-5. PubMed ID: 23455444 [TBL] [Abstract][Full Text] [Related]
13. Alloying Strategy in Cu-In-Ga-Se Quantum Dots for High Efficiency Quantum Dot Sensitized Solar Cells. Peng W; Du J; Pan Z; Nakazawa N; Sun J; Du Z; Shen G; Yu J; Hu JS; Shen Q; Zhong X ACS Appl Mater Interfaces; 2017 Feb; 9(6):5328-5336. PubMed ID: 28092935 [TBL] [Abstract][Full Text] [Related]
14. Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells. Sun Z; Sitbon G; Pons T; Bakulin AA; Chen Z Sci Rep; 2015 May; 5():10626. PubMed ID: 26024021 [TBL] [Abstract][Full Text] [Related]
15. Improvement in PbS-based Hybrid Bulk-Heterojunction Solar Cells through Band Alignment via Bismuth Doping in the Nanocrystals. Saha SK; Bera A; Pal AJ ACS Appl Mater Interfaces; 2015 Apr; 7(16):8886-93. PubMed ID: 25853277 [TBL] [Abstract][Full Text] [Related]
16. Detailed balance model for intermediate band solar cells with photon conservation. Lin CC; Liu WL; Shih CY Opt Express; 2011 Aug; 19(18):16927-33. PubMed ID: 21935053 [TBL] [Abstract][Full Text] [Related]
17. Investigation of GaInAs strain reducing layer combined with InAs quantum dots embedded in Ga(In)As subcell of triple junction GaInP/Ga(In)As/Ge solar cell. Li S; Bi J; Li M; Yang M; Song M; Liu G; Xiong W; Li Y; Fang Y; Chen C; Lin G; Chen W; Wu C; Wang D Nanoscale Res Lett; 2015; 10():111. PubMed ID: 25852406 [TBL] [Abstract][Full Text] [Related]
18. Photovoltaic performance of bithiazole-bridged dyes-sensitized solar cells employing semiconducting quantum dot CuInS2 as barrier layer material. Guo F; He J; Li J; Wu W; Hang Y; Hua J J Colloid Interface Sci; 2013 Oct; 408():59-65. PubMed ID: 23928484 [TBL] [Abstract][Full Text] [Related]
20. High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: short circuit current enhancement without the loss of open circuit voltage by shell thickness control. Choi H; Song JH; Jang J; Mai XD; Kim S; Jeong S Nanoscale; 2015 Nov; 7(41):17473-81. PubMed ID: 26440646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]