BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 30076383)

  • 21. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.
    Paquet D; Kwart D; Chen A; Sproul A; Jacob S; Teo S; Olsen KM; Gregg A; Noggle S; Tessier-Lavigne M
    Nature; 2016 May; 533(7601):125-9. PubMed ID: 27120160
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.
    Albadri S; Del Bene F; Revenu C
    Methods; 2017 May; 121-122():77-85. PubMed ID: 28300641
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Correction of Hemoglobin E/Beta-Thalassemia Patient-Derived iPSCs Using CRISPR/Cas9.
    Wattanapanitch M
    Methods Mol Biol; 2021; 2211():193-211. PubMed ID: 33336279
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved and Flexible HDR Editing by Targeting Introns in iPSCs.
    Fu J; Fu YW; Zhao JJ; Yang ZX; Li SA; Li GH; Quan ZJ; Zhang F; Zhang JP; Zhang XB; Sun CK
    Stem Cell Rev Rep; 2022 Jun; 18(5):1822-1833. PubMed ID: 35089463
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR-Cas9-Mediated Gene Editing in Mouse Spermatogonial Stem Cells.
    Wang Y; Ding Y; Li J
    Methods Mol Biol; 2017; 1622():293-305. PubMed ID: 28674816
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Precision genome editing in the CRISPR era.
    Salsman J; Dellaire G
    Biochem Cell Biol; 2017 Apr; 95(2):187-201. PubMed ID: 28177771
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneous precise editing of multiple genes in human cells.
    Riesenberg S; Chintalapati M; Macak D; Kanis P; Maricic T; Pääbo S
    Nucleic Acids Res; 2019 Nov; 47(19):e116. PubMed ID: 31392986
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effective control of large deletions after double-strand breaks by homology-directed repair and dsODN insertion.
    Wen W; Quan ZJ; Li SA; Yang ZX; Fu YW; Zhang F; Li GH; Zhao M; Yin MD; Xu J; Zhang JP; Cheng T; Zhang XB
    Genome Biol; 2021 Aug; 22(1):236. PubMed ID: 34416913
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage.
    Zhang JP; Li XL; Li GH; Chen W; Arakaki C; Botimer GD; Baylink D; Zhang L; Wen W; Fu YW; Xu J; Chun N; Yuan W; Cheng T; Zhang XB
    Genome Biol; 2017 Feb; 18(1):35. PubMed ID: 28219395
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency.
    Canny MD; Moatti N; Wan LCK; Fradet-Turcotte A; Krasner D; Mateos-Gomez PA; Zimmermann M; Orthwein A; Juang YC; Zhang W; Noordermeer SM; Seclen E; Wilson MD; Vorobyov A; Munro M; Ernst A; Ng TF; Cho T; Cannon PM; Sidhu SS; Sicheri F; Durocher D
    Nat Biotechnol; 2018 Jan; 36(1):95-102. PubMed ID: 29176614
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair.
    Savic N; Ringnalda FC; Lindsay H; Berk C; Bargsten K; Li Y; Neri D; Robinson MD; Ciaudo C; Hall J; Jinek M; Schwank G
    Elife; 2018 May; 7():. PubMed ID: 29809142
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR/Cas9-mediated homology-directed repair by ssODNs in zebrafish induces complex mutational patterns resulting from genomic integration of repair-template fragments.
    Boel A; De Saffel H; Steyaert W; Callewaert B; De Paepe A; Coucke PJ; Willaert A
    Dis Model Mech; 2018 Oct; 11(10):. PubMed ID: 30355591
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A versatile bulk electrotransfection protocol for murine embryonic fibroblasts and iPS cells.
    Eghbalsaied S; Hyder I; Kues WA
    Sci Rep; 2020 Aug; 10(1):13332. PubMed ID: 32770110
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Baculovirus-based genome editing in primary cells.
    Mansouri M; Ehsaei Z; Taylor V; Berger P
    Plasmid; 2017 Mar; 90():5-9. PubMed ID: 28119062
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of genome editing through CRISPR-Cas9 engineering.
    Zhang JH; Adikaram P; Pandey M; Genis A; Simonds WF
    Bioengineered; 2016 Apr; 7(3):166-74. PubMed ID: 27340770
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electroporation-Based CRISPR/Cas9 Gene Editing Using Cas9 Protein and Chemically Modified sgRNAs.
    Laustsen A; Bak RO
    Methods Mol Biol; 2019; 1961():127-134. PubMed ID: 30912044
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gene Replacement by Intron Targeting with CRISPR-Cas9.
    Li J; Meng X; Li J; Gao C
    Methods Mol Biol; 2019; 1917():285-296. PubMed ID: 30610644
    [TBL] [Abstract][Full Text] [Related]  

  • 38. qEva-CRISPR: a method for quantitative evaluation of CRISPR/Cas-mediated genome editing in target and off-target sites.
    Dabrowska M; Czubak K; Juzwa W; Krzyzosiak WJ; Olejniczak M; Kozlowski P
    Nucleic Acids Res; 2018 Sep; 46(17):e101. PubMed ID: 29878242
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel Cas9 fusion protein promotes targeted genome editing with reduced mutational burden in primary human cells.
    Carusillo A; Haider S; Schäfer R; Rhiel M; Türk D; Chmielewski KO; Klermund J; Mosti L; Andrieux G; Schäfer R; Cornu TI; Cathomen T; Mussolino C
    Nucleic Acids Res; 2023 May; 51(9):4660-4673. PubMed ID: 37070192
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increasing Knockin Efficiency in Mouse Zygotes by Transient Hypothermia.
    Bouchareb A; Biggs D; Alghadban S; Preece C; Davies B
    CRISPR J; 2024 Apr; 7(2):111-119. PubMed ID: 38635329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.