BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 30076383)

  • 61. HDAC inhibitors improve CRISPR-mediated HDR editing efficiency in iPSCs.
    Zhang JP; Yang ZX; Zhang F; Fu YW; Dai XY; Wen W; Zhang B; Choi H; Chen W; Brown M; Baylink D; Zhang L; Qiu H; Wang C; Cheng T; Zhang XB
    Sci China Life Sci; 2021 Sep; 64(9):1449-1462. PubMed ID: 33420926
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Electroporation of mice zygotes with dual guide RNA/Cas9 complexes for simple and efficient cloning-free genome editing.
    Teixeira M; Py BF; Bosc C; Laubreton D; Moutin MJ; Marvel J; Flamant F; Markossian S
    Sci Rep; 2018 Jan; 8(1):474. PubMed ID: 29323173
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Controlled Cycling and Quiescence Enables Efficient HDR in Engraftment-Enriched Adult Hematopoietic Stem and Progenitor Cells.
    Shin JJ; Schröder MS; Caiado F; Wyman SK; Bray NL; Bordi M; Dewitt MA; Vu JT; Kim WT; Hockemeyer D; Manz MG; Corn JE
    Cell Rep; 2020 Sep; 32(9):108093. PubMed ID: 32877675
    [TBL] [Abstract][Full Text] [Related]  

  • 64. CRISPR/Cas9 Ribonucleoprotein-mediated Precise Gene Editing by Tube Electroporation.
    Ma L; Jang L; Chen J; Song J; Yang D; Zhang J; Chen YE; Xu J
    J Vis Exp; 2019 Jun; (148):. PubMed ID: 31282887
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Design and Derivation of Multi-Reporter Pluripotent Stem Cell Lines via CRISPR/Cas9n-Mediated Homology-Directed Repair.
    Dettmer R; Naujok O
    Curr Protoc Stem Cell Biol; 2020 Sep; 54(1):e116. PubMed ID: 32628328
    [TBL] [Abstract][Full Text] [Related]  

  • 66. CRISPR/Cas9-based knockout pipeline for reverse genetics in mammalian cell culture.
    Spiegel A; Bachmann M; Jurado Jiménez G; Sarov M
    Methods; 2019 Jul; 164-165():49-58. PubMed ID: 31051255
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Gene editing in mouse zygotes using the CRISPR/Cas9 system.
    Wefers B; Bashir S; Rossius J; Wurst W; Kühn R
    Methods; 2017 May; 121-122():55-67. PubMed ID: 28263886
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A Tet-Inducible CRISPR Platform for High-Fidelity Editing of Human Pluripotent Stem Cells.
    Jurlina SL; Jones MK; Agarwal D; De La Toba DV; Kambli N; Su F; Martin HM; Anderson R; Wong RM; Seid J; Attaluri SV; Chow M; Wahlin KJ
    Genes (Basel); 2022 Dec; 13(12):. PubMed ID: 36553630
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Precise and efficient nucleotide substitution near genomic nick via noncanonical homology-directed repair.
    Nakajima K; Zhou Y; Tomita A; Hirade Y; Gurumurthy CB; Nakada S
    Genome Res; 2018 Feb; 28(2):223-230. PubMed ID: 29273627
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Design Principles of a Novel Construct for HBB Gene-Editing and Investigation of Its Gene-Targeting Efficiency in HEK293 Cells.
    Lotfi M; Ashouri A; Mojarrad M; Mozaffari-Jovin S; Abbaszadegan MR
    Mol Biotechnol; 2024 Mar; 66(3):517-530. PubMed ID: 37266832
    [TBL] [Abstract][Full Text] [Related]  

  • 71. CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites.
    Jayavaradhan R; Pillis DM; Goodman M; Zhang F; Zhang Y; Andreassen PR; Malik P
    Nat Commun; 2019 Jun; 10(1):2866. PubMed ID: 31253785
    [TBL] [Abstract][Full Text] [Related]  

  • 72. RNA-Guided
    Ittiprasert W; Chatupheeraphat C; Mann VH; Li W; Miller A; Ogunbayo T; Tran K; Alrefaei YN; Mentink-Kane M; Brindley PJ
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054816
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Efficient and allele-specific genome editing of disease loci in human iPSCs.
    Smith C; Abalde-Atristain L; He C; Brodsky BR; Braunstein EM; Chaudhari P; Jang YY; Cheng L; Ye Z
    Mol Ther; 2015 Mar; 23(3):570-7. PubMed ID: 25418680
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes.
    Chen S; Lee B; Lee AY; Modzelewski AJ; He L
    J Biol Chem; 2016 Jul; 291(28):14457-67. PubMed ID: 27151215
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing.
    Guo T; Feng YL; Xiao JJ; Liu Q; Sun XN; Xiang JF; Kong N; Liu SC; Chen GQ; Wang Y; Dong MM; Cai Z; Lin H; Cai XJ; Xie AY
    Genome Biol; 2018 Oct; 19(1):170. PubMed ID: 30340517
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Ligation-assisted homologous recombination enables precise genome editing by deploying both MMEJ and HDR.
    Zhao Z; Shang P; Sage F; Geijsen N
    Nucleic Acids Res; 2022 Jun; 50(11):e62. PubMed ID: 35212386
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Towards mastering CRISPR-induced gene knock-in in plants: Survey of key features and focus on the model Physcomitrella patens.
    Collonnier C; Guyon-Debast A; Maclot F; Mara K; Charlot F; Nogué F
    Methods; 2017 May; 121-122():103-117. PubMed ID: 28478103
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Generation of genetically modified rat models via the CRISPR/Cas9 technology.
    Liu MZ; Wang LR; Li YM; Ma XY; Han HH; Li DL
    Yi Chuan; 2023 Jan; 45(1):78-87. PubMed ID: 36927640
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Bridging Gaps in HDR Improvement: The Role of MAD2L2, SCAI, and SCR7.
    Anuchina AA; Zaynitdinova MI; Demchenko AG; Evtushenko NA; Lavrov AV; Smirnikhina SA
    Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047677
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Strategies for Enhancing the Homology-Directed Repair Efficiency of CRISPR-Cas Systems.
    Sun W; Liu H; Yin W; Qiao J; Zhao X; Liu Y
    CRISPR J; 2022 Feb; 5(1):7-18. PubMed ID: 35076280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.